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CHAPTER 2

Detecting Influential
Observations and Outliers

In this chapter we identify subsets of the data that appear to have a
disproportionate influence on the estimated model and ascertain which
parts of the estimated model are most affected by these subsets. The focus
is on methods that involve both the response (dependent) and the
explanatory (independent) variables, since techniques not using both of
these can fail to detect multivariate influential observations.

The sources of influential subsets are diverse. First, there is the inevi-
table occurrence of improperly recorded data, either at their source or in
their transcription to computer-readable form. Second, observational
errors are often inherent in the data. Although procedures more
appropriate for estimation than ordinary least squares exist for this
situation, the diagnostics we propose below may reveal the unsuspected
existence and severity of observational errors. Third, outlying data points
may be legitimately occurring extreme observations. Such data often
contain valuable information that improves estimation efficiency by its
presence. Even in this beneficial situation, however, it is constructive to
isolate extreme points and to determine the extent to which the parameter
estimates depend on these desirable data. Fourth, since the data could
have been generated by a model(s) other than that specified, diagnostics
may reveal patterns suggestive of these alternatives.

The fact that a small subset of the data can have a disproportionate
influence on the estimated parameters or predictions is of concern to users
of regression analysis, for, if this is the case, it is quite possible that the
model-estimates are based primarily on this data subset rather than on the
majority of the data. If, for example, the task at hand is the estimation of
the mean and standard deviation of a univariate distribution, exploration

6



DETECTING INFLUENTIAL OBSERVATIONS AND OUTLIERS 7

of the data will often reveal outliers, skewness, or multimodal distributions.
Any one of these might cast suspicion on the data or the appropriateness
of the mean and standard deviation as measures of location and
variability, respectively. The original model may also be questioned, and
transformations of the data consistent with an alternative model may be
suggested. Before performing a multiple regression, it is common practice
to look at the univariate distribution of each variate to see if any oddities
(outliers or gaps) strike the eye. Scatter diagrams are also examined. While
there are clear benefits from sorting out peculiar observations in this way,
diagnostics of this type cannot detect multivariate discrepant observations,
nor can they tell us in what ways such data influence the estimated model.

After the multiple regression has been performed, most detection
procedures focus on the residuals, the fitted (predicted) values, and the
explanatory variables. Although much can be learned through such
methods, they nevertheless fail to show us directly what the estimated
model would be if a subset of the data were modified or set aside. Even if
we are able to detect suspicious observations by these methods, we still will
not know the extent to which their presence has affected the estimated
coefficients, standard errors, and test statistics. In this chapter we develop
techniques for diagnosing influential data points that avoid some of these
weaknesses. In Section 2.1 the theoretical development is undertaken. Here
new techniques are developed and traditional procedures are suitably
modified and reinterpreted. In Section 2.2 the diagnostic procedures are
exemplified through their use on an intercountry life-cycle savings function
employing cross-sectional data. Further examples of these techniques and
their interrelation with the collinearity diagnostics that are the subject of
the next chapter are found in Chapter 4.

Before describing multivariate diagnostics, we present a brief two-
dimensional graphic preview that indicates what sort of interesting
situations might be subject to detection. We begin with an examination of
Exhibit 2.1a which portrays a case that we might call (to avoid statistical
connotations) evenly distributed. If the variance of the explanatory
variable is small, slope estimates will often be unreliable, but in these
circumstances standard test statistics contain the necessary information.

In Exhibit 2.1b, the point o is anomalous, but since it occurs near the
mean of the explanatory variable, no adverse effects are inflicted on
the slope estimate. The intercept estimate, however, will be affected. The
source of this discrepant observation might be in the response variable, or
the error term. If it is the last, it could be indicative of heteroscedasticity or
thick-tailed error distributions. Clearly, more such points are needed to
analyze those problems fully, but isolating the single point is instructive.
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Exhibit 2.1 Plots for alternative configurations of data.
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2.1 THEORETICAL FOUNDATIONS 9

Exhibit 2.1c¢ illustrates the case in which a gap separates the discrepant
point from the main body of data. Since this potential outlier is consistent
with the slope information contained in the rest of the data, this situation
may exemplify the benevolent third source of influence mentioned above
in which the outlying point supplies crucially useful information—in this
case, a reduction in variance. Exhibit 2.1d is a more troublesome
configuration that can arise frequently in practice. In this situation, the
estimated regression slope is almost wholly determined by the extreme
point. In its absence, the slope might be almost anything. Unless the
extreme point is a crucial and valid piece of evidence (which, of course,
depends on the research context), the researcher is likely to be highly
suspicious of the estimate. Given the gap and configuration of the main
body of data, the estimated slope surely has fewer than the usual degrees
of freedom; in fact, it might appear that there are effectively only two data
points.

The situation displayed in Exhibit 2.1e is a potential source of concern
since either or both o’s will heavily influence the slope estimate, but
differently from the remaining data. Here is a case where some corrective
action is clearly indicated—either data deletion or, less drastically, a
downweighting of the suspicious observations or possibly even a model
reformulation.

Finally, Exhibit 2.1f presents an interesting case in which deletion of
either o by itself will have little effect on the regression outcome. The
potential effect of one outlying observation is clearly being masked by the
presence of the other. This example serves as simple evidence for the need
to examine the effects of more general subsets of the data.

2.1 THEORETICAL FOUNDATIONS

In this section we present the technical background for diagnosing
influential data points. Our discussion begins with a description of the
technique of row deletion, at first limited to deleting one row (observation)
at a time. This procedure is easy to understand and to compute. Here we
examine in turn how the deletion of a single row affects the estimated
coefficients, the predicted (fitted) values, the residuals, and the estimated
covariance structure of the coefficients. These four outputs of the
estimation process are, of course, most familiar to users of multiple
regression and provide a basic core of diagnostic tools.

The second diagnostic procedure is based on derivatives of various
regression outputs with respect to selected regression inputs. In particular,
it proves useful to examine the sensitivity of the regression output to small
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perturbations away from the usual regression assumption of homoscedas-
ticity. Elements of the theory of robust estimation can then be used to
convert these derivatives into diagnostic measures.

The third diagnostic technique moves away from the traditional
regression framework and focuses on a geometric approach. The y vector is
adjoined to the X matrix to form n data points in a p+1 dimensional
space. It then becomes possible for multivariate methods, such as ratios of
determinants, to be used to diagnose discrepant points. The emphasis here
is on locating outliers in a geometric sense.

Our attention then turns to more comprehensive diagnostic techniques
that involve the deletion or perturbation of more than one row at a time.
Such added complications prove necessary, for, in removing only one row
at a time, the influence of a group of influential observations may not be
adequately revealed. Similarly, an influential data point that coexists with
others may have its influence masked by their presence, and thus remain
hidden from detection by single-point (one-at-a-time) diagnostic
techniques. The first multiple-point (more-than-one-at-a-time) procedures
we examine involve the deletion of subsets of data, with particular
emphasis on the resulting change in coefficients and fitted values. Since
multiple deletion is relatively expensive, lower-cost stepwise! methods are
also introduced.

The next class of procedures adjoins to the X matrix a set of dummy
variables, one for each row under consideration. Each dummy variate
consists of all zeros except for a one in the appropriate row position.
Variable-selection techniques, such as stepwise regression or regressions
with all possible subsets removed, can be used to select the discrepant rows
by noting which dummy variables remain in the regression. The derivative
approaches can also be generalized to multiple rows. The emphasis is
placed both on procedures that perturb the homoscedasticity assumption
in exactly the same way for all rows in a subset and on low-cost stepwise
methods.

Next we examine the usefulness of Wilks’ A statistic applied to the
matrix Z, formed by adjoining y to X, as a means for diagnosing groups of
outlying observations. This turns out to be especially useful either when
there is no natural way to form groups, as with most cross-sectional data,
or when unexpected groupings occur, such as might be the case in census
tract data. We also examine the Andrews-Pregibon (1978) statistic.

"The use of the term srepwise in this context should not be confused with the concept of
stepwise regression, which is not being indicated. The term sequential was considered but not
adopted because of its established statistical connotations.
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Finally we consider generalized distance measures (like the Mahalanobis
distance) applied to the Z matrix. These distances are computed in a
stepwise manner, thus allowing more than one row at a time to be
considered.

A useful summary of the notation employed is given in Exhibit 2.2.

Single-Row Effects

We develop techniques here for discovering influential observations.? Each
observation, of course, is closely associated with a single row of the data
matrix X and the corresponding element of y.> An influential observation
is one which, either individually or together with several other
observations, has a demonstrably larger impact on the calculated values of
various estimates (coefficients, standard errors, t-values, etc.) than is the
case for most of the other observations. One obvious means for examining
such an impact is to delete each row, one at a time, and note the resultant
effect on the various calculated values.* Rows whose deletion produces
relatively large changes in the calculated values are deemed influential. We
begin, then, with an examination of this procedure of row deletion, looking
in turn at the impact of each row on the estimated coefficients and the
predicted (fitted) values ()’s), the residuals, and the estimated parameter
variance-covariance matrix. We then turn to other means of locating single
data points with high impact: differentiation of the various calculated
values with respect to the weight attached to an observation, and a
geometrical view based on distance measures. Generalizations of some of
these procedures to the problem of assessing the impact of deleting more
than one row at a time are then examined.

Deletion.

Coefficients and Fitted Values. Since the estimated coefficients are often
of primary interest to users of regression models, we look first at the
change in the estimated regression coefficients that would occur if the ith
row were deleted. Denoting the coefficients estimated with the ith row

2A number of the concepts employed in this section have been drawn from the existing
literature, Relevant citations accompany the derivation of these formulae in Appendix 2A.
30bservations and rows need not be uniquely paired, for in time-series models with lagged
variables, the data relevant to a given observation could occur in several neighboring rows.
We defer further discussion of this aspect of time-series data until Chapters 4 and 5, and
continue here to use these two terms interchangeably.

“The term row deletion is used generally to indicate the deletion of a row from both the X
matrix and the y vector.
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2.1 THEORETICAL FOUNDATIONS

deleted by b(#), this change is easily computed from the formula

(X"X) " 'xTe,
1—-hA ’

1

DFBETA,;=b-b(i)=

where

h=x,(X"X)"'x],

13

(2.1)

(2.2)

and the reader is reminded that x; is a row vector. The quantity A; occurs
frequently in the diagnostics developed in this chapter and it is discussed

more below.?

Whether the change in b;, the jth component of b, that results from the
deletion of the ith row is large or small is often most usefully assessed

relative to the variance of b, that is, s*(X"X); . If we let

C=(X"X)"'X,
then

b= =12
Since

S (XTX) " Wx(XTX) " = (X7X) 7,

i=]

it follows that [see Mosteller and Tukey (1977)]

n
var(b)=0% 3, ci.
Thus a scaled measure of change can be defined as

DFBETAS, = — AL €

SN \/E |, SOa-R)

ik
k=1

5See Appendixes 2A and 2B for details on the computation of the 4.

2.3)

2.4)

(2.5)

(2.6)

2.7)
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where we have replaced s?, the usual estimate of o2, by

1

YN
s%(¥) pa—

2 [yk_xkb(i)]z

koei

in order to make the denominator stochastically independent of the
numerator in the Gaussian (normal) case. A simple formula for s(i) results
from

2

(n=p=1)s%(i) = (n=p)s*~ T2 28)

In the special case of location,

DFBETA, = —'—
n-—1
and
DFBETAS, = —— (2.9)
= =5 :

As we might expect, the chance of getting a large DFBETA is reduced in
direct proportion to the increase in sample size. Deleting one observation
should have less effect as the sample size grows. Even though scaled by a
measure of the standard error of b, DFBETAS, decreases in proportion to
Vn.

Returning to the general case, large values of [DFBETAS,| indicate
observations that are influential in the determination of the jth coefficient,
b,-.‘ The nature of “large” in relation to the sample size, », is discussed
below.

Another way to summarize coefficient changes and, at the same time, to
gain insight into forecasting effects when an observation is deleted is by

§ When the Gaussian assumption holds, it can also be useful to look at the change in
I-statistics as a means for assessing the sensitivity of the regression output to the deletion of
the ith row, that is, to examine

y b,(i)
V)7t sOVXTOXOL

Studying the changes in regression statistics is a good second-order diagnostic tool because, if
a row appears to be overly influential on other grounds, an examination of the regression
statistics will show whether the conclusions of hypothesis testing would be affected.

DFTSTAT,=
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the change in fit, defined as

DFFIT, =5, 5,(i)=x,[b—b(i)] = Th:‘f; (2.10)

This diagnostic measure has the advantage that it does not depend on the
particular coordinate system used to form the regression model. For

scaling purposes, it is natural to divide by o\/;,- , the standard deviation of
the fit, 7, =x/b, giving

s()V1-h

where ¢ has been estimated by s(i). A measure similar to (2.11) has been
suggested by Cook (1977).

It is natural to ask about the scaled changes in fit for other than the ith
row; that is,

(2.11)

h. 1/2
DFFITS,:[ s ]

x,(b—b(i)) _ hie;

s()WVh  s()Vh (1=h)

where A, =x,(X7X) ™ 'xI. Since

(2.12)

ATb-b]|  {[b-b()] ETX)[b-b()]} "

sup =

A s(i)[AT(xTx)—lA] 172 S(i)
=|DFFITS/|, (2.13)
it follows that
x,[b—b(i
X(bb0)] <|DFFITS,|. (2.14)
s(i)V by

Thus |DFFITS;| dominates the expression in (2.12) for all k and these
latter measures need only be investigated when |DFFITS,| is large.

A word of warning is in order here, for it is obvious that there is room
for misuse of the above procedures. High-influence data points could
conceivably be removed solely to effect a desired change in a particular
estimated coefficient, its ¢t-value, or some other regression output. While
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this danger surely exists, it is an unavoidable consequence of a procedure
that successfully highlights such points. It should be obvious that an
influential point is legitimately deleted altogether only if, once identified, it
can be shown to be uncorrectably in error. Often no action is warranted,
and when it is, the appropriate action is usually more subtle than simple
deletion. Examples of corrective action are given in Section 2.2 and in
Chapter 4. These examples show that the benefits obtained from
information on influential points far outweigh any potential danger.

The Hat Matrix. Returning now to our discussion of deletion diagnos-
tics, we can see from (2.1) to (2.11) that A, and e are fundamental
components. Some special properties of h, are discussed in the remainder
of this section and we study special types of residuals (like ¢;/s(i)V 1—h, )
in the next section.’

The h, are the diagonal elements of the least-squares projection matrix,
also called the hat matrix,

H=X(X"X) X7, (2.15)
which determines the fitted or predicted values, since
§y=Xb=Hy. (2.16)

The influence of the response value, y;, on the fit is most directly reflected
in its impact on the corresponding fitted value, $;, and this information is
seen from (2.16) to be contained in 4. The diagonal elements of H can also
be related to the distance between x; and X (the row vector of explanatory
variable means). Denoting by tilde data that have been centered, we show
in Appendix 2A that

h,—~

i

=h=%,(X"X)"'%7. (2.17)

|-

We see from (2.17) that A, is a positive-definite quadratic form and thus
possesses an appropriate distance interpretation.®

Where there are two or fewer explanatory variables, scatter plots will
quickly reveal any x-outliers, and it is not hard to verify that they have

7The immediately following material closely follows Hoaglin and Welsch (1978).

®As is well known {Rao (1973), Section lc.1], any nX n positive-definite matrix A may be
decomposed as A=PTP for some non-singular matrix P. Hence the positive-definite
quadratic form xTAx (x an n-vector) is equivalent to the sum of squares z'z (the squared
Euclidean length of the n-vector z), where z=Px.
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relatively large h; values. When p>2, scatter plots may not reveal
“multivariate outliers,” which are separated from the bulk of the x-points
but do not appear as outliers in a plot of any single explanatory variable or
pair of them. Since, as we have seen, the diagonal elements of the hat
matrix H have a distance interpretation, they provide a basic starting point
for revealing such “multivariate outliers.” These diagonals of the hat
matrix, the h;, are diagnostic tools in their own right as well as being
fundamental parts ‘of other such tools.
H is a projection matrix and hence, as is shown in Appendix 2A,

0<h < 1. (2.18)

Further, since X is of full rank,

i h=p. (2.19)

The average size of a diagonal element, then, is p/n. Now if we were
designing an experiment, it would be desirable to use data that were
roughly equally influential, that is, each observation having an A; near to
the average p/n. But since the X data are usually given to us, we need
some criterion to decide when a value of A, is large enough (far enough
away from the average) to warrant attention.

When the explanatory variables are independently distributed as the
multivariate Gaussian, it is possible to compute the exact distribution of
certain functions of the h;,’s. We use these results for guidance only,
realizing that independence and the Gaussian assumption are often not
valid in practice. In Appendix 2A, (n—p)[h,—(1/n)l/(1—h)(p—1) is
shown to be distributed as F with p—1 and n—p degrees of freedom. For
p>10 and n—p>50 the 95% value for F is less than 2 and hence 2p/n
(twice the balanced average h;) is a good rough cutoff. When p/n>04,
there are so few degrees of freedom per parameter that all observations
become suspect. For small p, 2p/n tends to call a few too many points to
our attention, but it is simple to remember and easy to use. In what
follows, then, we call the ith observation a leverage point when h; exceeds
2p/n. The term leverage is reserved for use in this context.

Note that when h; =1, we have §,= y,; that is, ¢;=0. This is equivalent to
saying that, in some coordinate system, one parameter is determined
completely by y, or, in effect, dedicated to one data point. A proof of this
result is given in Appendix 2A where it is also shown that

det[ XT(i)X(i)] = (1— k) det (X"X). (2.20)
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Clearly when b, =1 the new matrix X(i), formed by deleting the ith row, is
singular and we cannot obtain the usual least-squares estimates. This is
extreme leverage and does not often occur in practice.

We complete our discussion of the hat matrix with a few simple
examples. For the sample mean, all elements of H are 1/n. Here p=1 and
each h;=p/n, the perfectly balanced case.

For a straight line through the origin,

x,.xj
.21)

= e 2’
21Xk
and

> h=p=1.

=]

Simple linear regression is slightly more complicated, but a few steps of
algebra give

P S 1 ) 2.22)
no Biai(x,— %)

Residuals. We turn now to an examination of the diagnostic value of
the effects that deleting rows can have on the regression residuals. The use
of the regression residuals in a diagnostic context is, of course, not new.
Looking at regression residuals, e;=y,—,, and especially large residuals,
has traditionally been used to highlight data points suspected of unduly
affecting regression results. The residuals have also been employed to
detect departures from the Gauss-Markov assumptions on which the
desirable properties of least squares rest. As is well known, the residuals
can be used to detect some forms of heteroscedasticity and auto-
correlation, and can provide the basis for mitigating these problems. The
residuals can also be used to test for the approximate normality of the
disturbance term. Since the least-squares estimates retain their property of
best-linear-unbiasedness even in the absence of normality of the
disturbances, such tests are often overlooked in econometric practice, but
even moderate departures from normality can noticeably impair estimation
efficiency’ and the meaningfulness of standard tests of hypotheses.
Harmful departures from normality include pronounced skewness,
multiple modes, and thick-tailed distributions. In all these uses of residuals,

® The term efficiency is used here in a broad sense to indicate minimum mean-squared error.
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one should bear in mind that large outliers among the true errors, ¢, can
often be reflected in only modest-sized least-squares residuals, since the
squared-error criterion weights extreme values heavily.

Three diagnostic measures based on regression residuals are presented
here; two deal directly with the estimated residuals and the third results
from a change in the assumption on the error distribution. The first is
simply a frequency distribution of the residuals. If there is evident visual
skewness, multiple modes, or a heavy-tailed distribution, a graph of the
frequency distribution will prove informative. It is worth noting that
economists often look at time plots of residuals but seldom at their
frequency or cumulative distribution.

The second is the normal probability plot, which displays the cumulative
normal distribution as a straight line whose slope measures the standard
deviation and whose intercept reflects the mean. Thus a failure of the
residuals to be normally distributed will often reveal itself as a departure of
the cumulative residual plot from a straight line. Outliers often appear at
either end of the cumulative distribution.

Finally, Denby and Mallows (1977) and Welsch (1976) have suggested
plotting the estimated coefficients and residuals as the error likelihood, or,
equivalently, as the criterion function (negative logarithm of the likelihood)
is changed. One such family of criterion functions has been suggested by
Huber (1973); namely,

2
—2— ll’ <c

p(t)=
clt-

- (2.23)

3 || >e,

which goes from least squares (c=o0) to least absolute residuals (c— 0).
This approach is attractive because of its relation to robust estimation, but
it requires considerable computation.

For diagnostic use the residuals can be modified in ways that will
enhance our ability to detect problem data. It is well known [Theil (1971)]
that

var(e)=o*(1—h,). (2.249)

Consequently, many authors have suggested that, instead of studying e, we
should use the standardized residuals

= (2.25)
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We prefer instead to estimate o by s(V) [cf. (2.8)). The result is a studentized
residual (RSTUDENT),

e
e*

() Vi—h

which, in a number of practical situations, is distributed closely to the
t-distribution with n—p—1 degrees of freedom. Thus, if the Gaussian
assumption holds, we can readily assess the significance of any single
studentized residual. Of course, the e;* will not be independent.

The studentized residuals have another interesting interpretation. If we
were to add to the data a dummy variable consisting of a column with all
zeros except for a one in the ith row (the new model), then e* is the
t-statistic that tests for the significance of the coefficient of this new
variable. To prove this, let SSR stand for sum of squared residuals and
note that

(2.26)

[SSR(old model) — SSR(new model)]/1

SSR(new model) /(n—p—1) (2.27)
—_ 2__ e 2/ 2
Y Y V5 U N AP
s*(i) s2(i)(1— k)
Under the Gaussian assumption, (2.27) is distributed as F, ,,_,_,, and the

result follows by taking the square root of (2.28). Some additional details
are contained in Appendix 2A.

The studentized residuals thus provide a better way to examine the
information in the residuals, both because they have equal variances and
because they are easily related to the t-distribution in many situations.
However, this does not tell the whole story, since some of the most
influential data points can have relatively small studentized residuals (and
very small e).

To illustrate with the simplest case, regression through the origin, note
that

X;€;

b— b(i)= (2.29)

-
Z ji%Xj

Equation (2.29) shows that the residuals are related to the change in the
least-squares estimate caused by deleting one row, but each contains
different information, since large values of |b— b(i)| can be associated with
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small |¢]| and vice versa. Hence row deletion and the analysis of residuals
need to be treated together and on an equal footing.

When the index of observations is time, the studentized residuals can be
related to the recursive residuals proposed by Brown, Durbin, and Evans
(1975). If b(s) is the least-squares estimate based on the first r—1
observations, then the recursive residuals are defined to be

y,—x,b(t)
{1+x,[XT()X(1)] ™ 'x7} 2

9= t=p+1,...,T.  (2.30)

which by simple algebra (see Appendix 2A) can be written as
YK“xﬁ

Vi-b,

where h, and b are computed from the first ¢ observations. For a related
interpretation see a discussion of the PRESS residual by Allen (1971).
When we set

: (2.31)

S=3 (n-xb (2.32)

i=1
(2.8) gives
S,=S,_,+q (2.33)

Brown, Durbin, and Evans propose two tests for studying the constancy of
regression relationships over time. The first uses the cusum

T-p <
W="g" 2 g t=p+l..T, (234)
T j=p+1

and the second the cusum-of-squares

I3 t=p+1,...,T. (2.35)

= L
=5
Schweder (1976) has shown that certain modifications of these tests,
obtained by summing from j= T to t >p+ 1 (backward cusum, etc.) have
greater average power. The reader is referred to that paper for further
details. An example of the use of these tests is given in Section 4.3.
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Covariance Matrix. So far we have focused on coefficients, predicted
(fitted) values of y, and residuals. Another major aspect of regression is the
covariance matrix of the estimated coefficients.!® We again consider
the diagnostic technique of row deletion, this time in a comparison of the
covariance matrix using all the data, ¢%(XTX)~!, with the covariance
matrix that results when the ith row has been deleted, o’[X7(i)X(i)]~!. Of
the various alternative means for comparing two such positive-definite
symmetric matrices, the ratio of their determinants det[X7(i))X(i)]~'/
det(X7X)~! is one of the simplest and, in the present application, is quite
appealing. Since these two matrices differ only by the inclusion of the ith
row in the sum of squares and cross products, values of this ratio near
unity can be taken to indicate that the two covariance matrices are close,
or that the covariance matrix is insensitive to the deletion of row i. Of
course, the preceding analysis is based on information from the X matrix
alone and ignores the fact that the estimator s? of o2 also changes with the
deletion of the ith observation. We can bring the y data into consideration
by comparing the two matrices s2(X7X)~! and s’()[X7()X()]™" in the
determinantal ratio,

det{ s*()[ XT()X())] ')

COVRATIO=
det[sz(XTX)_']

_ s%(i) det[ X7()X(i)]™' .
s# det(X7X) !

(2.36)

Equation (2.36) may be given a more useful formulation by applying (2.20)
to show

det{ X7()X(i)]~
[XT()X()] =11h. 237)
det(X7X) ™! —
Hence, using (2.8) and (2.26) we have
COVRATIO= l . (2.38)
n-p—1 e}’
+ (1-h)
n—p n—p

194 diagnostic based on the diagonal elements of the covariance matrix can be obtained from
the expression (2.6). By noting which cﬁ appear to be excessively large for a given j, we
determine those observations that influence the variance of the jth coefficient. This
diagnostic, however, has two weaknesses. First, it ignores the off-diagonal elements of the

covariance matrix and second, emphasis on the ¢ ignores s2.
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As a diagnostic tool, then, we are interested in observations that result in
values of COVRATIO from (2.38) that are not near unity, for these
observations are possibly influential and warrant further investigation.

In order to provide a rough guide to the magnitude of such variations
from unity, we consider the two extreme cases |e*|>2 with & at its
minimum (1/n) and A, > 2p/n with ¢* =0. In the first case we get

COVRATIO~ ! < l

2_ P’
LY (1)
n—p h—=p

Further approximation leads to

-1

—l—-—z(ni’i) ~1- 22, (2.39)
3\ n n

(+35)

n—p

where n — p has been replaced by n for simplicity. The latter bounds are, of
course, not useful when n < 3p. For the second case

1 llh S 1 .
() 7 (=350 0-%)

A cruder but simpler bound follows from

COVRATIO=

1 1

~

(-5 0-%) (==5)-7)

-1
z(x—g’i) ~1+ 2 (2.40)
n n

Therefore we investigate points with [COVRATIO~—1| near to or larger
than 3p/n."

The formula in (2.38) is a function of basic building blocks, such as A,
and the studentized residuals. Roughly speaking (2.38) will be large when
h; is large and small when the studentized residual is large. Clearly those

11 Some prefer to normalize expressions like (2.36) for model size by raising them to the 1/pth
power. Had such normalization been done here, the approximations corresponding to (2.39)
and (2.40) would be 1—(3/n) and 1+ (3/n) respectively.
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two factors can offset each other and that is why it is useful to look at
them separately and in combinations as in (2.38).

We are also interested in how the variance of j; changes when an
observation is deleted. To do this we compute

var(5,) =%,

var(y,(i)) = var(x,b(i)) = sz(i)[ T_h__'}T ]’

i

and form the ratio

2/
FVARATIO= —-)__
s*(1-h)

This expression is similar to COVRATIO except that s%(i)/s? is not raised
to the pth power. As a diagnostic measure it will exhibit the same patterns
of behavior with respect to different configurations of h and the
studentized residual as described above for COVRATIO.

Differentiation. We examine now a second means for identifying
influential observations, differentiation of regression outputs with respect
to specific model parameters. In particular, we can alter the weight
attached to the ith observation if, in the assumptions of the standard linear
regression model, we replace var(¢)=o? with var(¢)=02/w, for the
specific i only. Differentiation of the regression coefficients with respect to
w,, evaluated at w,=1, provides a means for examining the sensitivity of
the regression coefficients to a slight change in the weight given to the ith
observation. Large values of this derivative indicate observations that have
large influence on the calculated coefficients. This derivative, as is shown
in Appendix 2A, is

b(w) _ (X"X)"'x]e,

(2.41)

ow; [1_(1"”’:')":']2,
and it follows that
ab(w,
a(:') =(XTX)"'x"e,. (2.42)

i wym=]

This last formula is often viewed as the influence of the ith observation on
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the estimated coefficients. Its relationship to the formula (2.1) for
DFBETA is obvious and it could be used as an alternative to that statistic.

The theory of robust estimation [cf. Huber (1973)] implies that influence
functions such as (2.42) can be used to approximate the covariance matrix
of b by forming

i (XTX) ™ 'x7eex,(XTX) "' = i e2(XTX) ™ 'xTx,(X7X)”"'. (2.43)
i=] i=1

This is not quite the usual covariance matrix, but if e? is replaced by the
average value, X7 _,e2/n, we get

n 2 n " 2
St S (X)X T = R TX) T, (249)
i=1

which, except for degrees of freedom, is the estimated least-squares
covariance matrix.
To assess the influence of an individual observation, we compare

> (XTX) " 'xIx, (XTX) ! (2.45)
ki
with
sHXTX)"L (2.46)
The use of determinants with the sums in (2.45) is difficult, so we replace

e? for k=i by s%(i), leaving

s3(i) 5 (XTX)" 'xTx, (XTX) "' = s2()(XTX) T [ XT()X() J(XTX)

(2.47)

Forming the ratio of the determinant of (2.47) to that of (2.46) we get

s(i) det[XT()X(i)] (1-h)

s det(X"X)  {[(n—p-1)/(n=p)]+[e**/(n-p)]}"’

(2.48)

which is just (2.38) multiplied by (1 —h,)%. We prefer (2.38) because no
substitution for e? is required.
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A similar result for the variances of the fit, §;,, compares the ratio of
= i ei€eh} and s?h, giving, after some manipulation,

S(i)(1=h) 1—h,
s2 - o *2
(%35 355)
n—p n—p

which we note to be FVARATIO multiplied by (1 — 4,)%. This ratio can be
related to some of the geometric procedures discussed below.

, (2.49)

A Geometric View. In the previous sections we have examined several
techniques for diagnosing those observations that are influential in the
determination of various regression outputs. We have seen that key roles
are played in these diagnostic techniques by the elements of the hat matrix
H, especially its diagonal elements, the 4, and by the residuals, the ;. The
former elements convey information from the X matrix, while the latter
also introduce information from the response vector, y. A geometric way of
viewing this interrelationship is offered by adjoining the y vector to the X
matrix to form a matrix Z=[Xy], consisting of p+1 columns. We can
think of each row of Z as an observation in a p + 1 dimensional space and
search for “outlying” observations.

In this situation, it is natural to think of Wilks’ A statistic [Rao (1973)]
for testing the differences in mean between two populations. Here one
such population is represented by the ith observation and the second by
the rest of the data. If we let Z denote the centered (by %) Z matrix, then
the statistic is

det( Z7Z~(n—-1Di'()i(i)) -1z )
det(Z7Z)

Ag)=
where i(i) is the p-vector (row) of column means of Z(i).
As part of our discussion of the hat matrix in Appendix 2A, we show
that

A%)= 2= (1=h), (2.50)

and a simple application of the formulas for adding a column to a matrix
[Rao (1973), p. 33] shows that

n

A@)=(Z5)a-h) 1+

(n—p—1)

«” ]_l. @.51)
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This index is again seen to be composed of the basic building blocks, 4,
and the studentized residuals, e*, and is similar (in the case of a single
observation in one group) to (2.49). Small values of (2.51) would indicate
possible discrepant observations.

If we are willing to assume, for purposes of guidance, that Z consists of
n independent samples from a p-dimensional Gaussian distribution, then
A(Z)) can be easily related to the F-statistic by

(e

(2.52)

In place of A(Z;) we could have used the Mahalanobis distance between
one row and the mean of the rest; that is,

M@E)=(n-2)(5-E)ETHZ0)) ' (E-50)". @53

where i(i) is Z(i) centered by Z(i). This is seen by noting that A and M are
simply related by

1-A _ (n=1)M
A (n=2)n’

(2.54)

However, A(%,) has a more direct relationship to A; and its computation is
somewhat easier when, later on, we consider removing more than one
observation at a time.

The major disadvantage of diagnostic approaches based on Z is that the
special nature of y in the regression context is ignored (except when X is
considered as fixed in the distribution of diagnostics based on Z). The
close parallel of this approach to that of the covariance comparisons as
given in (2.48) and (2.49) suggests, however, that computations based on Z
will prove useful as well.

Criteria for Influential Observations. In interpreting the results of each
of the previously described diagnostic techniques, a problem naturally
arises in determining when a particular measure of leverage or influence is
large enough to be worthy of further notice. When, for example, is a
hat-matrix diagonal large enough to indicate a point of leverage, or a
DFBETA an influential point? As with all empirical procedures, this
question is ultimately answered by judgment and intuition in choosing
reasonable cutoffs most suitable for the problem at hand, guided wherever
possible by statistical theory. There are at least three sources of
information for determining such cutoffs that seem useful: external
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scaling, internal scaling, and gaps. Elasticities, such as (36 ,(w;)/dw,)(w,/ b)),
and approximations to them like (b;—5,(i))/b, may also be useful in
specific applications, but will not be pursued here.

External Scaling. External scaling denotes cutoff values determined by
recourse to statistical theory. Each of the t-like diagnostics RSTUDENT,
DFBETAS, and DFFITS, for example, has been scaled by an appropriate
estimated standard error, which, under the Gaussian assumption, is
stochastically independent of the given diagnostic. As such, it is natural to
say, at least to a first approximation, that any of the diagnostic measures is
large if its value exceeds two in magnitude. Such a procedure defines what
we call an absolute cutoff, and it is most useful in determining cutoff values
for RSTUDENT, since this diagnostic is less directly dependent on the
sample size. Absolute cutoffs, however, are also relevant to determining
extreme values for the diagnostics DFBETAS and DFFITS, even though
these measures do depend directly on the sample size, since it would be
most unusual for the removal of a single observation from a sample of 100
or more to result in a change in any estimated statistic by two or more
standard errors. By way of contrast, there can be no absolute cutoffs for
the hat-matrix diagonals #; or for COVRATIO, since there is no natural
standard-error scaling for these diagnostics.

While the preceding absolute cutoffs are of use in providing a stringent
criterion that does not depend directly on the sample size n, there are
many cases in which it is useful to have a cutoff that would tend to expose
approximately the same proportion of potentially influential observations,
regardless of sample size. Such a measure defines what we call a
size-adjusted cutoff. In view of (2.7) and (2.9) a size-adjusted cutoff for
DFBETAS is readily calculated as 2/ Vn . Similarly, a size-adjusted cutoff
for DFFITS is possible, for we recall from (2.19) that a perfectly balanced
design matrix X would have #,=p/n for all i, and hence [see (2.11)],

p \\2
DFFITS,:(———) er.

A convenient size-adjusted cutoff in this case would be 2V p/n, which
accounts both for the sample size n and the fact that DFFITS, increases as
2 does. In effect, then, the perfectly balanced case acts as a standard from
which this measure indicates sizable departures. As we have noted above,
the only cutoffs relevant to the hat-matrix diagonals 4, and COVRATIO
are the size-adjusted cutoffs 2p/n and 1+3(p/n), respectively.

Both absolute and size-adjusted cutoffs have practical value, but the
relation between them becomes particularly important for large data sets.
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In this case, it is unlikely that the deletion of any single observation can
result in large values for [DFBETAS| or |[DFFITS]|; that is, when n is large
there are not likely to be any observations that are influential in the
absolute sense. However, it is still extremely useful to discover those
observations that are most strongly influential in relation to the others, and
the size-adjusted cutoffs provide a convenient means for doing this.

Internal Scaling. Internal scaling defines extreme values of a diagnostic
measure relative to the “weight of the evidence” provided by the given
diagnostic series itself. The calculation of each deletion diagnostic results
in a series of n values. The hat-matrix diagonals, for example, form a set of
size n, as do DFFIT and the p series of DFBETA. Following Tukey (1977)
we compute the interquartile range § for each series and indicate as
extreme those values that exceed (7/2)s. If these diagnostics were
Gaussian this would occur less than 0.1% of the time. Thus, these limits
can be viewed as a convenient point of departure in the absence of a more
exact distribution theory. The use of an interquartile range in this context
provides a more robust estimate of spread than would the standard
deviation when the series are non-Gaussian, particularly in instances where
the underlying distribution is heavy tailed."?

Gaps. With either internal or external scaling, we are always alerted
when a noticeable gap appears in the series of a diagnostic measure; that
is, when one or more values of the diagnostic measure show themselves to
be singularly different from the rest. The question of deciding when a gap
is worthy of notice is even more difficult than deriving the previous
cutoffs. Our experience with the many data sets examined in the course of
our research, however, shows that in nearly every instance a large majority
of the elements of a diagnostic series bunches in the middle, while the tails
frequently contain small fractions of observations clearly detached from
the remainder.

It is important to note that, in any of these approaches to scaling, we
face the problems associated with extreme values, multiple tests, and
multiple comparisons. Bonferroni-type bounds can be useful for small data
sets or for situations where only few diagnostics need to be examined
because the rest have been excluded on other grounds. Until more is
known about the issue, we suggest a cautious approach to the use of the

12 For further discussion of appropriate measures of spread for non-Gaussian data, see
Mosteller and Tukey (1977).
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diagnostics, but not so cautious that we remain ignorant of the potentially
damaging effects of highly influential data.

Partial-Regression Leverage Plots. Simple two-variable regression
scatter-plots (like the stylized examples in Exhibit 2.1e and f) contain
much diagnostic information about residuals and leverage and, in addition,
provide guidance about influential subsets of data that might escape
detection through the use of single-row techniques.

It is natural to ask if a similar tool exists for multiple regression, and this
leads to the partial-regression leverage plot. This graphical device can be
motivated as follows. Let X[k] be the nX(p— 1) matrix formed from the
data matrix, X, by removing its kth column, X,. Further let u, and v,,
respectively, be the residuals that result from regressing y and X, on X{[k].
As is well known, the kth regression coefficient of a multiple regression of
y on X can be determined from the simple two-variate regression of u, on
v,. We define, then, the partial-regression leverage plot for b, as a scatter
plot of the u, against the v, along with their simple linear-regression line.
The residuals from this regression line are, of course, just the residuals
from the multiple regression of y on X, and the slope is b,, the
multiple-regression estimate of 8,. Also, the simple correlation between u,,
and v, is equal to the partial correlation between y and X, in the multiple
regression.

We feel that these plots are an important part of regression diagnostics
and that they should supplant the traditional plots of residuals against
explanatory variables. Needless to say, however, partial-regression leverage
plots cannot tell us everything. Certain types of multivariate influential
data can be overlooked and the influence of the leverage points detected in
the plot will sometimes be difficult to quantify. The computational details
for these plots are discussed by Mosteller and Tukey (1977) who show that
the u, are equal to b,v, +e, where e is the vector of residuals from the
multiple regression. This fact saves considerable computational effort.

The v, have another interesting interpretation. Let A k] denote the
elements of the hat matrix for the regression of y on all of the explanatory
variables except X,. Then the elements of the hat matrix for the full
regression are
Ox,iCk,j

n 2’
1=1%k,¢

hy=hy{ k] + (2.55)
where v, ; denotes the ith component of the vector v,. This expression can
be usefully compared with (2.21) for regression through the origin. Thus
the v, are closely related to the partial leverage added to h,;[k] by the
addition of X, to the regression.
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Multiple-Row Effects

In the preceding discussion, we have presented various diagnostic
techniques for identifying influential observations that have been based on
the deletion or alteration of a single row. While such techniques can
satisfactorily identify influential observations much of the time, they will
not always be successful. We have already seen, for example, in the simple
case presented in Exhibit 2.1f that one outlier can mask the effect of
another. It is necessary, therefore, to develop techniques that examine the
potentially influential effects of subsets or groups of observations. We turn
shortly to several multiple-row techniques that tend to avoid the effects of
masking and that have a better chance of isolating influential subsets in
the data.

Before doing this, however, we must mention an inherent problem in
delimiting influential subsets of the data, namely, when to stop—with
subsets of size two, three, or more? Clearly, unusual observations can only
be recognized relative to the bulk of the remaining data that are considered
to be typical, and we must select an initial base subset of observations to
serve this purpose. But how is this subset to be found? One straightforward
approach would be to consider those observations that do not appear
exceptional by any of the single-row measures discussed above. Of course,
we could always be fooled, as in the example of Exhibit 2.1f, into including
some discrepant observations in this base subset, but this would be
minimized if we used low cutoffs, such as relaxing our size-adjusted cutoff
levels to 90% or less instead of holding to the more conventional 95%
level. We could also remove exceptional observations noticed in the
partial-regression leverage plots. Some of the following procedures are less
dependent on a base subset than others, but it cannot be avoided entirely,
for the boundary between the typical and the unusual is inherently vague.
We denote by B* (of size m*) the largest subset of potentially influential
observations that we wish to consider. The complement of B* is the base
subset of observations defined to be typical.

We follow the same general outline as before and discuss deletion,
residuals, differentiation, and geometric approaches in the multiple-row
context.

Deletion. A natural multiple-row generalization of (2.4) would be to
examine the larger values of

|b,— b(D,)|

scale ’ . (2.56)

forj=1,...,p and m=2, 3, 4, and so on, and where “scale” indicates some
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appropriate measure of standard error. Here D,, is a set (of size m) of
indexes of the rows to be deleted. If fitted values are of interest, then the
appropriate measure becomes

[x([b—b(D,)]|

scale ’ (2.57)

for k=1,...,n. Although computational formulas exist for these quantities
[Bingham (1977)), the cost is great and we feel most of the benefits can be
obtained more simply.

To avoid the consideration of p quantities in (2.56) or n quantities in
(2.57), squared norms, such as

[b—b(D,)]"[b-b(D,)] (2.58)
or
[b—b(D,) ] X"X[b—b(D,)] (2.59)

can be considered as summary measures. Since we are often most
interested in changes in fit that occur for the data points remaining after
deletion, (2.59) can be modified to

MDFFIT=[b-b(D,)]"X"(D,)X(D,)[b-b(D,)].  (2.60)

Bingham (1977) shows (2.60) can also be expressed as

e5 X [XT(D,)X(D,)] "X} ey, (261)

where e is the column vector of least-squares residuals and where D,,, used
as a subscript, denotes a matrix or vector with rows whose indexes are
contained in D,,. Because of (2.61) MDFFIT can be computed at lower
cost than (2.59). Unfortunately, even (2.61) is computationally expensive
when m exceeds about 20 observations. Some inequalities, however, are
available for MDFFIT which may ease these computational problems.
More details are provided at the end of Appendix 2B.

For larger data sets, a stepwise approach is available that can provide
useful information at low cost. This method begins for m =2 by using the
iwo largest |DFFIT] (or |DFFITS)) to form D{V. If the two largest values
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of
Ix,[b—b(D§V) ]| (2.62)

do not have their indexes k contained in D", a set D{? is formed
consisting of the indexes for the two largest. This procedure is iterated
until a set D, is found with indexes coinciding with the two largest values
of (2.62). The resulting statistic is designated SMDFFIT.

For m=3, a starting set D{" is found by using the three largest values
of (2.62) from the final iteration for m=2. Once the starting set is found
the iteration proceeds as for m =2. The overall process continues for m=4,
5, and so on. An alternative approach is to use the m largest values of
|DFFIT] to start the iterations for each value of m. Different starting sets
can lead to different final results.

This stepwise approach is motivated by the idea that the fitted values
most sensitive to deletion should be those which correspond to the deleted
observations because no attempt is being made to fit these points. Since
(2.14) does not hold in general when two or more points are deleted, the
stepwise process attempts to find a specific set for each m where it does
hold.

We conclude our study of multiple-row deletion by generalizing the
covariance ratio to a deletion set D,,; namely,

dets(D,) [ X(D,)X(D,)] '

COVRATIO(D,,)= (2.63)
dets3(X7X) !
Computation of this ratio is facilitated by the fact that
det[XT(D,)X(D,,
[ (D)X )] =det(I-H)p_, (2.64)
det(XTX)

where (I-H),, stands for the submatrix formed by considering only the
rows and columns of I—H that are contained in D,,. FYARATIO also can
be generalized."’

Studentized Residuals and Dummy Variables. The single-row studentized
residual given in (2.26) is readily extended to deletions of more than one
row at a time. Instead of adding just one dummy variate with a unity in
row / and zeros elsewhere, we add many such dummies, each with its unity

13 It is easily seen that equations (2.48) and (2.49) can also be generalized.
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only in the row to be deleted. In the extreme, we could add n such
variables, one for each row. This leads to a singular problem which can, in
fact, be studied. However, we assume that no more than n— p columns of
dummy variates are to be added.

Once the subset of dummy columns to be added has been decided on, a
problem that we turn to below, it is natural to make use of standard
regression selection techniques to decide which, if any, of these dummy
variables should be retained. Each dummy variable that is retained
indicates that its corresponding row warrants special attention, just as we
saw that the studentized residual calls attention to a single observation.
The advantage here is that several rows can be considered simultaneously
and we have a chance to overcome the masking situation in Exhibit 2.1f.

There are no clear-cut means for selecting the set of dummy variables to
be added. As already noted, we could use the previously described
single-row techniques along with partial-regression leverage plots to
determine a starting subset of potentially influential observations. Rather
generally, however, the computational efficiency of some of these selection
algorithms allows this starting subset to be chosen quite large,

To test any particular subset D,, of dummy variables a generalization of
(2.27) is available. For example, we could consider

[SSR(no dummies) — SSR(D,, dummies used) ] /m

RESRATIO= )
Tio SSR(D,, dummies used)/(n—p—m)
(2.65)
which is distributed as F,,_,_, if the appropriate probability

assumptions hold. For further details see Gentleman and Wilk (1975).

The use of stepwise regression has been considered as a solution to this
problem by Mickey, Dunn, and Clark (1967). The well-known difficulties
of stepwise regression arise in this context, and, in general, it is best to
avoid attempting to discover the model (i.e., explanatory variables) and
influential points at the same time. Thus one must first choose a set of
explanatory variables and stay with them while the dummy variables are
selected. Of course, this process may be iterated and, if some observations
are deleted, a new stepwise regression on the explanatory variable set
should be performed. Stepwise regression also clearly fails to consider all
possible combinations of the dummy variables and can therefore miss
influential points when more than one is present.

A natural alternative to stepwise regression is to consider
all-possible-subsets regression.!* The computational costs are higher and

14 See Furnival and Wilson (1974).
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more care must be taken in choosing the starting subset of dummy
variables. Wood (1973) has suggested using partial-residual plots'> to find
an initial subset which is subjected in turn to the C, selection technique
developed in Mallows (1973b) in order to find which dummy variables are
to be retained. We think this method is appealing, especially if
partial-regression leverage plots are combined with the methods discussed
earlier in this chapter as an aid to finding the initial subset of dummies.
Computational costs will tend to limit the practical size of this subset to 20
or fewer dummy variates.

The use of dummy variates has considerable appeal but the single-row
analogue, the studentized residual, is, as we have seen, clearly not adequate
for finding influential data points. This cnticism extends to the
dummy-variable approach because the use of sums of squares of residuals
fails to give adequate weight to the structure and leverage of the
explanatory-variable data.

The deletion methods discussed above provide one way to deal with this
failure. Another is to realize that I—H is proportional to the covariance
matrix of the least-squares residuals. A straightforward argument using
(2.64) shows that
det(I— H)D,,,i

1-—- h,(Dm) = ————det(l _ H)Dm ’

(2.66)
where the numerator submatrix of (I—H) contains the ith row and column
of I-H in addition to the rows and columns in D,. When this is
specialized to a single deleted row, ki, we obtain

(l - hi)(l — hk)" hiz;c
1-h,
=(1—-h)[1-cor’(e,)]. (2.67)

This means that A,(k) can be large when the magnitude of the correlation
between e; and e, is large. Thus useful clues about subsets of leverage
points can be provided by looking at large diagonal elements of H and at
the large residual correlations. This is an example of the direct use of the
off-diagonal elements of H, elements implicitly involved in most
multiple-row procedures. This is further exemplified in the next two
sections.

1~ h(k)=

Differentiation. Generalizing the single-row differentiation techniques
to multiple-row deletion is straightforward. Instead of altering the weight,
w;, attached to only one observation, we now consider a diagonal weight

135 On these plots, see Larson and McCleary (1972).
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matrix W, with diagonal elements (w,w,,...,w,)=w, and define
b(w)=(X"WX) " 'X7Wy. This b(w) is a vector-valued function of w whose
first partial derivatives evaluated at w=:t (the vector of ones) are

Vb(z) =CE, (2.68)

where V is the standard gradient operator, C is defined in (2.3), and
E=diag(e,,...,e,). If we are interested in fitted values, this becomes

XVb(t)=HE. (2.69)

Our concern is with subsets of observations that have a large influence,
One way to identify such subsets is to consider the directional derivatives
Vb(y)! where [ is a column vector of unit length with nonzero entries in
rows with indexes in D, that is, the rows to be perturbed. For a fixed m,
the indexes corresponding to the nonzero entries in those I which give large
values of

1TVDT(0)AVD(2)! (2.70)

would be of interest. The matrix A is generally I, X"X, or X"(D,)X(D,,).
These I vectors are just the eigenvectors corresponding to largest
eigenvalues of the matrix

[VDT(1)AVD(r) ], . @.71)

When A=X7X, (2.71) is just the matrix whose elements are h;e;e;, with
i, j€D,,. While the foregoing procedure is conceptually straightforward,
it has the practical drawback that, computationally, finding these eigen-
vectors is expensive. We therefore explore two less costly simplifications.
In the first simplification we place equal weight on all the rows of
interest, and consider the effect of an infinitesimal perturbation of that
single weight. This is equivalent to using a particular directional derivative,

I*, that has all of its nonzero entries equal. When A is X7X, this gives

PTVV(OXTXVB()I = 3 hee. (2.72)

(/]
i.jED,,

Much less computational effort is required to find the large values of (2.72)
than to compute the eigenvectors for (2.71). A more complete discussion of
this issue is contained in Appendix 2B. The expression b—b(i) is an
approximation to the ith column of Vb(t), and could be used instead in the
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preceding discussion. In this case (2.72) becomes

€;€6;
S h——t _ =MEWDFFIT. (2.73)
ijED,, Y (1 - hi)(l - hj)

In the second simplification, we use a stepwise approach for large data
sets, employed in the same manner as (2.62), using the statistic

2 el

ieD,

x, 2 (XTX)7'x]e;
i€ D,

(2.74)

Geometric Approaches. Wilks’ A statistic generalizes to the
multiple-row situation quite readily and is useful for discovering groups of
outliers. This is particularly interesting when the observations cannot be
grouped on the basis of prior knowledge (e.g., time) or when there is prior
knowledge but unexpected groupings occur.

The generalization goes as follows. Let /; be an nX 1 vector consisting of
ones for rows contained in D, and zeros elsewhere and L,=ut—1{,. The
relevant A statistic for this case is [Rao (1973), p. 570]

_ det[Z7Z~(1/m)Z7 "L~ (1 /(n—m))Z LI Z ]
det(Z7Z)

A(D,,)

Using an argument similar to that in Appendix 2A, this statistic reduces to

n ~
AD,)=1- m:—m—)(zf Pl,), (2.75)

where f’z—i(?TZ)" 1Z”. Thus A(D,,) is directly related to sums of elements
of a matrix, P, (H if Z is replaced by X) and, as we show in Appendix 2B,
this greatly simplifies computation.

To use A we examine the smaller valugs for each m=1, 2, and so on. If
we assume for guidance that the rows of Z are independent samples from a
p-variate Gaussian distribution, then

n—p—1\| 1-A(D,)
( p )[ A(D,) ]~Fp,n-p—l‘ (2.76)

This is only approximate, since we are interested in extreme values. It
would be even better to know the distribution of A conditional on X, but
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this remains an open problem. More than just the smallest value of A
should be examined for each m, since there may be several significant
groups. Gaps in the values of A are also usually worth noting.

Andrews and Pregibon (1978) have proposed another method based on
Z. They consider the statistic

_ det[27(D,)Z(D,,)]
- det(27Z)

_ (n=p=m)s(D,)et [XT(D,)X(D,)]
B (n—p)s?tdet(X"X)

which relates to (2.49) and (2.51) for m=1. The idea is to ascertain the
change in volume (measured by the determinant of Z7Z) caused by the
deletion of the rows in D,,. If Z instead of Z had been used, Q becomes
another form of Wilks’ A statistic where there are m+1 groups: one for
each row in D,, and one group for all the remaining rows.

Computationally, Q is about the same order as MDFFIT and
considerably more complicated than A. However, Andrews and Pregibon
have succeeded in developing a distribution theory for Q when y is
Gaussian and X is fixed. While useful only for n of modest size, it does
provide some significance levels for finding sets of outliers.

Both A and Q are computationally feasible for m<20. A stepwise
approach based on the Mahalanobis distance and the ideas of robust
covariance [Devlin, Gnanadesikan, and Kettenring (1975)] can be used for
larger subsets. The philosophy is similar to that developed for (2.62) and
(2.74). If we think the points in D are outliers, it is reasonable to remove

them from our estimate of the covariance and means of the columns of Z

by computing Z7(D)Z(D) and Z(D). The distance from any row %, to #( D)
is then measured by

M(i,D)=(n—2)[5-¥D)|[Z7(D)UD)] [2-UD)]".  (@78)

The starting set D{V consists of the rows corresponding to the two largest
values of the single-row Mahalanobis distance M(;). D{? consists of the
indexes of the two largest values of M(i, D{V). If D= D{Y, we stop. If
not we iterate with D{** " consisting of the two largest values of M(i, D{¥),
and the process stops when D{** V= D",

, 2.77)

Final Comments

The multiple-row techniques presented here form a subset of the possible
procedures that could be devised. Our choices have been made on the



