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 Statistical Science

 1991, Vol. 6, No. 1, 15-51

 That BLUP Is a Good Thing: The Estimation of
 Random Effects
 G. K. Robinson

 Abstract. In animal breeding, Best Linear Unbiased Prediction, or
 BLUP, is a technique for estimating genetic merits. In general, it is a
 method of estimating random effects. It can be used to derive the

 Kalman filter, the method of Kriging used for ore reserve estimation,
 credibility theory used to work out insurance premiums, and Hoadley's
 quality measurement plan used to estimate a quality index. It can be

 used for removing noise from images and for small-area estimation.
 This paper presents the theory of BLUP, some examples of its applica-
 tion and its relevance to the foundations of statistics.

 Understanding of procedures for estimating random effects should
 help people to understand some complicated and controversial issues

 about fixed and random effects models and also help to bridge the
 apparent gulf between the Bayesian and Classical schools of thought.

 Key words and phrases: Best linear unbiased prediction (BLUP), esti-
 mation of random effects, fixed versus random effects, foundations of

 statistics, likelihood, selection index, Kalman filtering, parametric em-
 pirical Bayes methods, small-area estimation, credibility theory, rank-
 ing and selection.

 1. INTRODUCTION

 The acronym BLUP stands for "Best Linear Un-
 biased Prediction" and is in common usage in ani-
 mal breeding. It is a method of estimating random
 effects.

 The context of BLUP is the linear model

 (1.1) y = X3 + Zu + e

 where y is a vector of n observable random vari-
 ables, a is a vector of p unknown parameters
 having fixed values (fixed effects), X and Z are
 known matrices, and u and e are vectors of q and
 n, respectively, unobservable random variables
 (random effects) such that E(u) = 0, E(e) = 0 and

 Var[e] o[ 2

 where G and R are known positive definite matri-
 ces and a2 is a positive constant.

 At times, we will discuss the estimation of disper-
 sion parameters and will use 0 to denote a vector of
 dispersion parameters on which the matrices G and

 G. K. Robinson is Principal Research Scientist,

 CSIRO, Division of Mathematics and Statistics, Pri-
 vate Bag 10, Clayton Victoria 3168, Australia.

 R depend. Generally, it will be assumed that the
 variance-covariance structure is known except per-
 haps for the single parameter a

 BLUP estimates of the realized values of the
 random variables u are linear in the sense that
 they are linear functions of the data, y; unbiased
 in the sense that the average value of the estimate
 is equal to the average value of the quantity being
 estimated; best in the sense that they have mini-
 mum mean squared error within the class of linear
 unbiased estimators; and predictors to distinguish
 them from estimators of fixed effects. A convention
 has somehow developed that estimators of random
 effects are called predictors while estimators of
 fixed effects are called estimators. As discussed in
 Section 7.1, I prefer to use the term "estimators"
 for both fixed and random effects.

 Mathematically, the BLUP estimates a of a and
 u of u are defined as solutions to the following
 simultaneous equations which were given by Hen-
 derson (1950), although in summation rather than
 matrix form:

 XTR lXf + XTR-lZi = XTRly

 Z(R1l)1X + (ZTR-1Z + G-1) = ZTR-ly.

 These equations have sometimes been called

 15
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 16 G. K. ROBINSON

 "mixed model equations," and and u referred to
 as "mixed model solutions." Note that as G'- tends
 to the zero matrix these equations tend formally to
 the generalized least-squares equations for estimat-
 ing a and u when the components of u are re-
 garded as fixed.effects.

 Henderson (1975) showed that provided X is of
 full rank, p, the variance-covariance matrix of esti-
 mation errors is

 ]T}

 E XTRiX XTRiZ 2

 ZT RilX ZTR-Z + G-1

 That BLUP estimates generally differ from the
 generalized least squares estimates that would be
 used if u were regarded as fixed is illustrated by
 the following example.

 EXAMPLE. A simple example of model (1.1) is
 that of first lactation yields of dairy cows with
 sire additive genetic merits being treated as ran-
 dom effects (u) and herd effects being treated as
 fixed effects (O). The matrix Ro2 is the variance-
 covariance matrix of the vector e of departures
 from a model in which yield was explicable entirely
 by sire effects and herd effects. The matrix R will
 be taken to be the identity matrix. Assume that the
 matrix G is a known multiple of the identity ma-
 trix, say O.1I. This would be a reasonable assump-
 tion provided that the sires were unrelated and
 provided that the variance ratio had been esti-
 mated previously.

 Suppose that we had records as follows.

 Herd Sire Yield

 1 A 110
 1 D 100
 2 B 110
 2 D 100
 2 D 100
 3 C 110
 3 C 110
 3 D 100
 3 D 100

 Then the entities in equation (1.1) are

 y = (110, 100, 110, 100, 100,110,110,100, 100)T,

 a= (hl h2, h3)T

 where hi is the environmental effect of the ith
 herd,

 U = (SA' SB' SC, SD),

 where si is the effect of the jth sire on his daugh-
 ters' lactation yields,

 1 0 0
 1 0 0
 0 1 0
 0 1 0

 X= 0 1 0

 O 0 1
 O 0 1
 O 0 1
 O 0 1

 and

 1 0 0 0
 O O 0 1
 0 1 0 0
 O O 0 1

 Z= O O O 1.
 O 0 1 0
 O 0 1 0
 0 0 0 1

 O O 0 1;

 Equation (1.2) gives us

 h1
 2 0 0 1 0 0 1
 0 3 0 0 1 0 2 2
 0 0 4 0 0 2 2 h3

 1 0 0 11 0 0 0
 0 1 0 0 11 0 0
 0 0 2 0 0 12 0 SB

 (1.3) 1 2 2 0 0 0 15 SC

 210
 310
 420

 = 110
 110
 220
 500

 which has solution

 (1.4) = (105.64, 104.28, 105.46)T
 u= (0.40, 0.52, 0.76, -1.67)

 If sire effects were treated as fixed, then equation
 (1.2) would be changed by omission of G- 1. This
 means that the last four diagonal elements in the
 left-hand-side matrix of equation (1.3) would be
 reduced by 10. The matrix equation for: and uf
 would no longer be of full rank, but a solution can
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 THE ESTIMATION OF RANDOM EFFECTS 17

 be obtained by setting, arbitrarily, SD= 0. This
 solution is

 (1.5) = (100, 100, 100),
 u= (10, 10, 10, O)

 The solution given by (1.5) is the least-squares
 solution with which most statisticians are well ac-
 quainted. Intuitively, each of the sires other than
 D has daughters that yield 10 units more on aver-
 age than the daughters of sire D to which they can
 be directly compared.

 The BLUP solution given by (1.4) takes into
 account the information that sire effects have less
 variation than the variance of lactation yields from
 daughters of a single sire. The extent to which a
 sire's estimated genetic merit is regressed toward
 the mean depends on the amount of information
 available concerning that sire. For instance, sire C
 is estimated to be better than sires A and B be-
 cause more is known about him-the lactation
 yields of his daughters are the same (110) as those
 of sires A and B.

 The variance-covariance matrix of the estimates
 from the mixed model is a2 times the inverse of the
 left-hand-side matrix in equation (1.3). The diago-

 nal elements of the inverse matrix for SA' SB' SC
 and SD are 0.0954, 0.0941, 0.0916 and 0.0833,
 respectively. Since the merit of a sire about which
 nothing was known would have a variance of 0.1 a2,
 there has been little gain in precision of sire effect
 estimates due to data on lactations of daughters.

 REMARKS. In this example, numbers with few
 significant digits have been used in order to make
 the example easier to follow. Consequently, vari-
 ance parameters should not be estimated from the
 given data. In practical situations, the variance
 ratio that was taken to be 0.1 or the variance a2
 may need to be estimated from the same data as is
 used to estimate sire genetic merits.

 My introduction to the estimation of random ef-
 fects was as statisician for the Australian Dairy
 ferd Improvement Scheme in mid-1980. This
 means that I think first of the estimation of genetic
 merits of dairy cattle when I think of estimating
 random effects. Readers might like to allow for this
 point of view.

 2. OBJECTIVES

 In a discussion at the Royal Statistical Society,
 Dawid (1976) remarked

 A constant theme in the development of statis-
 tics has been the search for justification for

 what statisticians do. To read the textbooks,
 one might get the distorted idea that 'Student'
 proposed his t-test because it was the Uni-
 formly Most Powerful Unbiased test for a Nor-
 mal mean, but it would be more accurate to say

 that the concept of UMPU gains much of its
 appeal because it produces the t-test, and ev-
 eryone knows that the t-test is a good thing.

 The words "a good thing" in the title of this
 paper are to be interpreted as coming from this
 quotation. I wish to argue that the BLUP method
 for estimating random effects is "a good thing" just
 as Student's t-test is "a good thing."

 I believe that the Classical school of thought in
 statistical inference should accept estimation of
 random effects as a legitimate activity. This theme

 will be developed in Section 4.3, which gives a
 classical justification for BLUP, and in Section 6,
 which lists applications. If estimation of random
 effects were accepted as legitimate by the Classical
 school, then the Bayesian and Classical schools of
 thought in statistics would differ less than much
 current rhetoric suggests.

 Another objective is to encourage communication
 between people who deal with the various applica-
 tions where random effects are estimated. The 50th
 Anniversary Conference, Iowa State Statistical
 Laboratory, encouraged such communication. See

 Harville (1984). Much theory has been developed
 separately in each of several areas of application
 and further theoretical work in each area might be

 assisted by looking at other fields. The computing
 problems associated with estimating random effects
 might also be alleviated by learning about methods
 used in other areas of application. See also Kackar
 and Harville (1984) and Robinson and Jones (1987)
 on the computational problems of estimating stan-
 dard errors.

 Another objective of this paper is to ask people to
 question the meanings of some fundamental statis-
 tical ideas. These include unbiasedness, likelihood,
 and the distinction between fixed and random ef-
 fects. They will be discussed further in Section 7.

 3. STRUCTURE

 Section 1 of this paper has introduced BLUP and
 the estimation of random effects without justifying
 the mathematical formulae used. Section 4 pre-
 sents some basic theory on estimation of random
 effects assuming 0 is known. This shows that BLUP
 can be derived in many different ways and is robust
 with respect to philosophy of statistics. Section 5
 discusses the relationship between estimation
 of random effects and other theoretical ideas. Its
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 18 G. K. ROBINSON

 purpose is to show that understanding the estima-
 tion of random effects can help with the under-
 standing of other theory. Section 6 reviews applica-
 tions involving estimation of random effects. It
 shows that many groups of people are estimating
 random effects and that it makes sense. Section 7
 reviews some fundamental ideas about statistics,

 suggesting that an understanding of estimation of
 random effects should influence our approaches and
 attitudes.

 4. DERIVATIONS OF BLUP

 Four derivations of BLUP are given below. Those
 in Sections 4.1 and 4.2 require the assumption of
 normality. Those in Sections 4.3 and 4.4 do not
 require normality as they only use first and second

 moments.

 4.1 Henderson's Justification

 Henderson (1950) described the BLUP estimates
 (1.2) as being "joint maximum likelihood esti-

 mates." Henderson (1973, page 16) explained that
 his derivation had actually been to assume that u

 and e are normally distributed and to maximize the

 joint density of y and u with respect to 0 and u. He
 suggests that this should not be called "maximum
 likelihood" because the function being maximized
 is not a likelihood.

 The joint density of y and u is

 (27r 2) 2n 2(det[ G 0)

 (4.1) exp{ 2a2 (y - X- Zu)
 RX (Y - X - Zu)}.

 To maximize this with respect to a and u requires
 minimizing

 (Y- X - Zu [0 R] (y - X-Zu)

 uTG-lu

 + (y - X3 - Zu)TR-1(y - X3 - Zu).

 Differentiating this with respect to a and u using
 the usual rules for vector differentiation of scalar
 functions and equating the derivatives to zero gives
 Henderson's mixed model equations (1.2).

 4.2 Bayesian Derivation

 A Bayesian derivation of BLUP is straightfor-
 ward. Regard A as a parameter with a uniform,
 improper prior distribution and u as a parameter

 which has a prior distribution that has mean zero
 and variance Ga2, independent of 3. Given a and
 u, the density of y is

 (2 7r2) 2fdet(R)-2

 *expt - 22(y - X - Zu)TR1

 .(y-X-Zu)}.

 The prior density is

 -lq ~-
 (2 2)2det (G 2exp - 2 ( UTG 1 u).

 Therefore the posterior density for 3 and u is pro-
 portional to expression (4.1), and so the posterior
 mode is given by the BLUP estimates.

 Dempfle (1977) gave a Bayesian presentation
 along these lines. Lindley and Smith (1972) pre-
 sented a derivation which is equivalent to this.

 It is generally true that Bayesian procedures are
 not affected by a stopping rule, provided that the
 stopping rule depends only on the data included in
 the analysis. This can be of substantial consolation
 in some applications. In estimating genetic merits
 of animals, mating and culling decisions depend on
 available information. Henderson (1965) investi-
 gated the conditions under which BLUP estimates
 are unbiased despite selection. In geostatistics, de-
 cisions about where to drill are based on data avail-
 able at the time.

 4.3 Within the Classical School

 The simplest case. The simplest case of estima-
 tion of random effects is in the estimation of residu-
 als from a simple normal model.

 Suppose that n observations are taken from a
 normal population which has mean , and variance
 a2 known to be 1. If the observations are
 X1, X2,..., Xn with mean X, then it is common to
 estimate the parameter , by X. Other estimates
 may be used if robustness in some sense is re-
 quired, but we will here assume that X is the most
 desirable estimator.

 The model could be written in the form

 Xi = ,. + ei,

 where ei is the error associated with the ith obser-
 vation and comes from a standard normal distribu-

 tion. These errors are also called residuals, being
 what is left of the observational data after the
 deterministic component is removed. Now, we
 might wish to ask: "What is the best estimate of

 es?" The obvious estimate of the residual ei is
 ei = Xi - X.
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 THE ESTIMATION OF RANDOM EFFECTS 19

 Properties of the residuals as estimators of the
 unknown errors are the following.

 1. They are linear in the data.

 2. They are unbiased in the sense that

 . Et e-j] = Et ei] .

 Note however that E[ei I eil is nearer to zero
 than is ei. In some circumstances, people tend
 to expect 'unbiased' to be interpretable as
 meaning that the expectation of an estimate
 of a random effect given the true value of the
 random effect is equal to that random effect.
 This is not the case.

 3. They have minimum mean square error
 amongst the class of linear unbiased estima-
 tors.

 In this very simple case, none of this is very
 interesting or enlightening; but it is notable that
 there is a situation where estimation of random
 effects is standard practice. We need to consider
 situations involving more than one source of varia-
 tion before anything nontrivial happens. However,
 it does suggest that it is reasonable to ask that
 estimates of random effects be linear, unbiased and
 minimum mean square error.

 The general case. Henderson (1963) showed us-
 ing Lagrange multipliers that BLUP estimates of
 linear combinations of fixed and random effects are
 the estimates that satisfy the classical require-
 ments of being linear, unbiased and minimum mean
 square error. Harville (1976) showed, further, that
 the Gauss-Markov theorem could be extended to
 cases when matrices G and R are of less than full
 rank. See also Ishii (1969, Example 2, pages
 482-487).

 A more intuitive approach to showing that the
 BLUP estimates have minimum mean squared er-
 ror within the class of linear unbiased estimates
 was given by Harville (1990). First, note that

 E[ yyTJ = XIfTXT + ZGZTu2 + Ra ,

 E[ uyT] = GZT2-

 and that, as Henderson, Kempthorne, Searle and
 von Krosigk (1959) showed, an alternative form for
 the BLUP estimates is

 = { xT(R+ZGZT)lX} xT(ZGZT+R)y -y
 u= (zTR-1Z + G-1) [TR1 - ZTRlX

 *{XT(R + ZGZT)'X}

 .XT(R + ZGZT)'] y.

 Linear unbiased estimates of zero are of the form
 aTy, where a satisfies XTa = 0. They are uncorre-
 lated with the errors of BLUP estimates, since

 E[( - )yTa]

 = {X T(R + ZGZT) 'X} XT(ZGZT + R)-

 * E[yyT ]a - fE[yT ]a

 = TXTa + {XT(R + ZGZT)' 1X} XTa2a
 - TXTa

 =0

 and

 E[(fi- u)yTa]

 = (ZT R1Z + G 1)'[ZTR-1 - ZTR-lX

 *XT(R + ZGZT) 'X} xT
 (R + ZGZT) jE[yyT ]a - E[ UyT ]a

 = (ZTR-lZ + G-1) 'ZTR-1(ZGZT + R)o2a

 _ GZTU2a

 = (ZTR-lZ + G-1)'(ZTR 1Z + G-')
 GZTU2a - GZTU2a

 = 0.

 Any linear unbiased estimator of a linear combina-

 tion bTo + CTU of fixed and random effects must be
 of the form bTV + CTU + aTy, where XTa = 0. Its
 variance-covariance matrix of estimation errors is

 E[{bT( - 3) + cT(u - u) + aTy}

 lb (- 3) + cT(u - u) + aTy}T]
 = E[{bT(I3I) + cT(u - u)}

 - {bT( - ) + c (u - u)} ] + E[aayyya]

 + T( - ) + CT( - u)}yTa]

 + E[aTy{bT( - ) + cT(C - u)} ]

 = E[{bT(f3) + cT(u- u)}

 *{b (fb-) +cT(u- u)}T] +uE[aTyyTa]

 Now E[aTyyTa] = E[aTy{ aTy}T] is a symmetric
 positive semidefinite matrix, so this variance-co-
 variance matrix of estimation errors exceeds that

 for the BLUP estimate bTf: + CTiU.

 4.4 Goldberger's Derivation

 Goldberger (1962) considered a linear model

 y = XT + C ,
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 20 G. K. ROBINSON

 where the disturbance ? satisfies E(?) = 0 and

 Var(e) = Q. Given a new (observable) vector x* of
 regressors and (unobservable) prediction distur-
 bance e*, which is correlated with the disturbances
 for the data already obtained, satisfying

 E(e*) = O

 E( eE* T = WT,

 Goldberger's equation (3.12) tells us that the best
 linear unbiased predictor of the future observation

 y*= X* + 6* is

 XT(XTWlX)Y'XTW-1y + WTW-1

 - wTU1X(xTW-1X)1 XT T-l1

 For our model, e = Zu + e, so

 Q= (ZGZT + R) 2.

 To estimate x*3 + *u take

 6 T 6* = T*

 and hence

 wT = E[ Tu(Zu + e)T] = zTGZTU2.

 So Goldberger's derivation tells us that the best
 linear unbiased predictor of x*T + zTu is

 x [xT(ZGZT+ R)'X] XT(ZGZT+ R)-'y

 + z*GZT(ZGZT + R)-

 zGZT(ZGZT + R)

 .X [XT(ZGZT + R)-'X ]

 .XT(ZGZT + R)-1Y
 which is

 X*T + ZTGZT(ZGZT + R)-(y -Z

 Using the matrix identity (5.2), below, and the
 second of the simultaneous equations (1.2), this is

 I + 4(zQr'Z + G 1)'ZTR1(y - X )

 = X + Z*

 Thus Goldberger's predictor is the same as that
 given by (1.2).

 To the best of my knowledge, Goldberger was the
 first to use the term "best linear unbiased predic-
 tor" and Henderson started using the acronym
 BLUP in 1973.

 Goldberger's derivation seems unobjectionable

 from a Classical viewpoint. His emphasis is on
 prediction, but his formulae still apply generally to

 prediction of a future observation, y*, which is
 perfectly correlated with a past disturbance, so they
 do apply to estimation of random effects.

 5. LINKS WITH OTHER STATISTICAL THEORY

 5.1 Recovery of Inter-Block Information

 Henderson, Kempthorne, Searle and von Krosigk

 (1959, page 196) showed that the BLUP estimate 3
 is identical with the generalized least-squares esti-

 mate of : that would be obtained after recovery of

 inter-block information if the random effects u were

 block effects. They eliminated u1 from equation
 (1.2), giving

 XTR- lXj
 _XT R Z(ZTR-lZ + G-1)' ZTR-1X

 XT Rly - XTR -Z(ZTR-lZ + G-1)-'ZTR-1y.

 Now using a matrix identity which is commonly
 used in this subject area

 (R + ZGZT)

 (5.1) = R-1 - R-lZ(ZTR-lZ + G-1)-'ZTR-1,

 gives

 XT (R + ZGZT) X, = XT(R + ZGZT)'-y

 Hence

 = [ XT(R + ZGZT)YX] xT(R + ZGZT)'y,
 which can be seen to be the generalized least
 squares estimate of 3, since the variance-covari-
 ance matrix of the random effects is

 E[(Zu + e)(Zu + e)T] = R + ZGZT.
 The matrix identity (5.1) is a particular case of

 (A + UBV) [A - A-1U
 -(I+ BVA-'U)'BVA-1]

 = I + UBVA' - U(I + BVA'-U)'BVA'-

 - UBVA-'U(I + BVA-'U)'BVA-

 = I

 of which the history and many variants, generaliza-
 tions and special cases are discussed by Henderson
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 THE ESTIMATION OF RANDOM EFFECTS 21

 and Searle (1981). In this paper, we will also use
 the matrix equality

 (5.2) (ZTRl'Z + G-1) 'ZTR-1
 = qZT(R + ZGZT)',

 which can be derived from (5.1).
 Recovery of interblock information is most com-

 monly discussed for experimental data from incom-
 plete block designs. Recovery of the interblock
 information improves the efflciency of the esti-
 mates of the fixed effects, but the estimates based
 only on intra-block information are often consid-
 ered to be satisfactory.

 For unbalanced data, estimates of fixed effects
 based only on intrablock information can some-
 times be quite unsatisfactory. An example of this is
 presented below. It was discussed in Henderson,
 Kempthorne, Searle and von Krosigk (1959).

 EXAMPLE. Fifty cows produce an average of 100
 kilograms of butterfat in their first lactations. Forty
 of these cows survive to complete their second lac-
 tations. The average first lactation butterfat yield
 of these 40 cows is 110 kilograms and the average
 second lactation butterfat yield is 140 kilograms.
 Estimate the average difference between lactations
 in the absence of culling!

 One answer is (140 - 100) kg = 40 kg, using all
 cows. Another answer is (140 - 110) kg = 30 kg,
 using only the cows which completed second lacta-
 tions. This is the estimate that uses only intra-cow
 information. If the true correlation between first
 and second lactations can be taken to be 1/2, then
 recovery of inter-cow information gives the esti-
 mate 35 kg.

 Intuitively, the cows culled are likely to be worse
 than average. Therefore the cows completing sec-
 ond lactations are likely to be better than average;
 so the first answer is likely to be too large. The
 cows not culled are unlikely to be as good as they
 appear to be because the data has been selected. An
 extreme case to illustrate this is that if first lacta-
 tion yield and second lactation yield were uncorre-
 lated, then culling on first lactation would not in-
 crease average second lactation yield but it would
 increase the first lactation yield of cows completing
 a second lactation by rejecting some data. The sec-
 ond answer is likely to be too small because the 110
 is an overestimate.

 In this example, the effect of lactation parity is
 being regarded as a fixed effect (treatment) and
 cow effects are being regarded as random effects
 (blocks). Thinking of the BLUP estimate of the

 lactation parity effect as being a Bayesian esti-
 mate, the likelihood principle tells us that the esti-
 mate does not need to be modified if culling has
 taken place, provided that culling decisions were
 based only on the data included in the analysis.
 Within the Classical framework, Henderson (1975)
 showed that selection and culling which is based on
 linear combinations (LTy) of the data y do not
 affect the optimality of the BLUP estimates pro-
 vided that LTX = 0. An aspect of this formalization
 that I cannot understand is the meaning of selec-
 tion based on the L matrix. In examples given in
 Henderson (1973, 1975, 1984), the numbering of
 the random effects is always such that best is first
 but ranking is not a linear function of the data.
 The problem has been of interest to Henderson
 throughout his career, but his work involving the L
 matrix is not widely understood or accepted.

 Estimates of environmental and genetic trends
 from dairying data tend to suffer from biases simi-
 lar to this, unless the inter-cow information is re-
 covered. Of course, the resulting estimates are sen-
 sitive to the values used for dispersion parameters,
 such as the correlation in the example above, but to
 not recover information is equivalent to using ex-
 treme values for dispersion parameters, and is
 worse.

 5.2 Random Effects Models

 Mathematically, it is easy to see from equations
 (1.2) and (5.2) that when there are no fixed effects
 the BLUP estimates of the random effects are given
 by

 (5.3) (ZTR-1Z + G-1)i = ZTRly
 and have variance-covariance matrix

 (5.4) (ZTR-Z + G-1)1U2.

 In animal breeding, BLUP for random effects mod-
 els is known as the selection index. See Smith
 (1936) and Hazel (1943). Lush (1949) referred to it
 as "most probable producing ability."

 Henderson (1963) describes BLUP as a form of
 selection index. In our notation, if : were known,
 then y - X: = Zu + e follows a random effects
 model, so the best estimate of u is

 (ZTR-lZ)'ZTR-1(y - XO).
 If we replace : by the estimate

 = [ xT(R + ZGZT)' X] (x + ZGZT)-ly,
 then the resulting estimate of u is the BLUP esti-
 mate, as shown by Henderson (1963).
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 22 G. K. ROBINSON

 Box and Tiao (1968) presented a detailed deriva-
 tion of BLUP estimates for random effects models
 within a Bayesian framework. Dempfle (1977) gave
 the following Bayesian derivation, which I find
 intuitively helpful. The idea is due to Robertson
 (1955) and is only applicable when the matrix Z is
 of full rank.

 The generalized least squares estimate of u is

 = (ZTR-lz)'ZTR-ly

 and has precision

 Var(u -u) = (ZTRZ)'.

 The prior estimate of u is

 U2 = 0

 and has precision

 Var(^2 - u) = G.

 The best estimate of u gives these two estimates
 weight in inverse proportion to their precision and
 is

 U = [Var(f1 - u)-1 + Var( _ U)-

 [Var (t 1 - u) lu1 + Var(f 2 - 21

 = [ZT R1Z + G-'] zTR-ly.

 A straightforward classical derivation is to use
 standard results on the multivariate normal distri-
 bution (e.g., Searle, 1971, page 47). Since u and y
 have zero means and variance-covariance matrix

 |G - GZT a2
 ZG ZGZT+R '

 the distribution of u given y has mean

 GZ T(ZGZT + R) 'y

 = (ZTR-lZ + G-1) ZTR1ly = fu

 and variance

 [G - GZT(ZGZT + R) ZG] 2

 = (ZTR-lZ + G-1)'1au2

 in agreement with (5.3) and (5.4). This derivation
 shows that, when there are no fixed effects to be
 estimated simultaneously, the theory of estimating
 random effects follows the theory of correlation
 very closely.

 Ideas about correlation are quite old. Pearson
 (1896, page 261) wrote

 The fundamental theorems of correlation were

 for the first time and almost exhaustively dis-
 cussed by BRAVAIS ('Analyse Mathematique
 sur les probabilite's des erreurs de situation
 d'un point'. Memoires par divers Savans, T.
 IX., Paris, 1846, pp 255-332) nearly half a
 century ago. He deals with the correlation of
 two and three variables ... GALTON ... intro-

 duced an improved notation ...

 Random effects models are also related to the
 idea of regression to the mean attributed by Davis
 (1986) to Galton. The best estimate of a character-
 istic of an offspring given the characteristics of the
 parents is regressed towards the population mean
 from the parental average.

 EXAMPLE. Suppose that true intelligence quo-
 tient (IQ) is normally distributed with mean 100
 and standard deviation 15. Two tests are available.
 Both tests give scores that are normally distributed
 with mean the true IQ. The first test score has
 standard deviation 10 given true IQ, while the
 second test score has standard deviation 5. A per-
 son scoring 130 on the first test would be estimated
 to have a true IQ of 120.8 and a person scoring 130
 on the second test would be estimated to have a
 true IQ of 127. Features of these estimates worth
 noting are as follows.

 * They are shrunk towards the overall mean
 (100) from the data. The amount of shrinkage
 is greater when the data point is less informa-
 tive.

 * They are biased given true IQ. This is obvious
 since the raw scores are unbiased and the esti-
 mates are nontrivial linear functions of the
 raw scores.

 * They have zero average bias when averaged
 over the distribution of possible true IQs.

 * The expected value of true IQ given the data is
 equal to the BLUP estimate of IQ, by (5.5).

 This example is far from new. In the discussion
 to Lindley and Smith (1972), Novick suggested that
 Kelley (1927) was familiar with the basic ideas of
 shrinkage estimators. Henderson (1973, page 15)
 explained that considering this example was cru-
 cial in his development of BLUP in 1949.

 5.3 Fixed Effects Models and Admissibility

 Fixed effects models are, of course, a particular
 case of mixed models. Stein's (1956) demonstration
 that the sample mean is inadmissible for the mean
 of a multidimensional normal population of known
 variance when the dimensionality is at least three
 has led to some theoretical work that I believe to be
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 of little practical value. This work is characterized
 by a tendency to combine unrelated estimation
 problems. BLUP helps us to know when to combine
 estimation problems. Situations where estimation
 problems ought to be combined are when the pa-
 rameters to be estimated can be regarded as com-
 ing from some distribution. Equivalently, they are
 "exchangeable," or are "random effects." I agree
 with the view expressed by E. F. Harding in discus-
 sion of Lindley and Smith (1972) that estimates of
 the characteristics of butterflies in Brazil, ball
 bearings in Birmingham, and brussels sprouts in
 Belgium ought not to be related to each other.

 5.4 Estimation of Variance Parameters

 The estimation of variance parameters is a very
 extensive topic. See, for instance, Khuri and Sahai
 (1985). The comments below concentrate on one

 method of estimating variance parameters, REML,
 which can be interpreted as either Classical or
 Bayesian.

 For balanced experimental data, the analysis of

 variance provides estimates which are often consid-
 ered acceptable. Sometimes estimates of variance
 components are negative, in which case they are
 taken to be zero.

 For unbalanced data, REML is the method of
 estimating variance components that seems to have
 the best credentials from a Classical viewpoint. See
 Robinson (1987) for a recent discussion with exam-
 ples. It was expounded by Patterson and Thompson
 (1971). They called it "modified maximum likeli-
 hood." Some people now refer to it as "restricted
 maximum likelihood," while others use the term
 "residual maximum likelihood."

 Thompson (1973) generalized REML to the multi-
 variate case and showed that it may be used even
 when the data available has been selected in cer-
 tain ways.

 Consider the problem of estimating 0 for the
 linear model given by equation (1.1). Bayesian
 statisticians would, in principle, start with a joint
 prior distribution for 0, A and u. If a uniform prior
 distribution is used for 3, then the posterior mode
 gives a point estimate of 0 and the BLUP estimates

 , and fu given that 0. These are not ideal estima-
 tors. Bayesian statisticians would prefer to esti-
 mate 0 by integrating over ,B and u rather than
 merely looking at the posterior for 3 and 'u.

 Harville (1974) showed that REML is equivalent
 to marginalizing the likelihood over the fixed effect
 parameters, so practical approximate Bayesian pro-
 cedures for estimating dispersion parameters can
 use REML to approximately integrate over the fixed
 and random effects.

 The Classical concept of modified profile likeli-
 hood due to Barndorff-Nielsen (1983) can also be
 regarded as an approximate Bayesian technique in
 which second derivatives of the posterior density
 are used to approximately integrate out nuisance
 parameters by assuming normal distributions with
 the given second derivatives for the nuisance pa-
 rameters. Such approximate integration gives a

 multiplicative factor that is the exponential of the

 - 2 power of the determinant of the observed infor-
 mation matrix for the nuisance parameters.

 5.5 Estimation of Outliers

 When fitting models with only one variance com-
 ponent, it is common practice to compute residuals
 in order to look for outliers. If it appears that some
 data points are outliers, then they may be ignored
 in some circumstances, they may be highlighted in
 other circumstances, or appropriately robust meth-
 ods of analysis may be used for estimating parame-
 ters of interest.

 When fitting models with two or more variance
 components, BLUP estimates of the realized values
 of random effects are the natural generalization of
 the concept of residuals. Outlying values of some
 random effects will mean that groups of data points
 are likely to fail to fit the model, but looking at the
 estimates of the random effects provides a more
 sensitive test for such outliers than merely looking
 at residuals. Fellner (1986) discusses this topic with
 some examples.

 5.6 Estimation of Fixed and Random Effects when

 the Dispersion Parameters Must be Estimated

 For most of this paper, estimation of random
 effects is considered under the assumption that 0 is
 known. All approaches seem to agree as to the best
 estimates of random effects in this case. There is
 less consensus about what to do when 0 must be
 estimated from the data.

 Student's t-test differs from simple use of the
 normal distribution in that it takes the uncertainty

 of estimating the variance of a normal distribution
 into account when considering hypotheses about
 the mean. It is natural to suspect that BLUP esti-
 mates or their estimated precision would need to be
 modified when 0 must be estimated.

 Kackar and Harville (1981) showed that esti-
 mates S and fu remain unbiased when 0 must be
 estimated provided that the estimates of compo-
 nents of 0 are translation-invariant and are even
 functions of the data vector. This suggests that the
 BLUP point estimates will generally not need to be
 modified. We do in principle, however, need to
 modify the estimated precision of the BLUP esti-
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 mates. In practice, this difficulty is sometimes ig-
 nored or handled by conservative interpretation of
 calculations based on the best point estimate of the
 dispersion parameters.

 Estimating the precision of BLUP estimates us-
 ing the Classical approach seems mathematically
 complicated when the uncertainty in dispersion pa-
 rameters is considered. For some recent work on
 the topic, see Kackar and Harville (1984), Harville
 (1985), Prasad and Rao (1986), Fuller and Harter
 (1987) and Jeske and Harville (1988).

 From a Bayesian point of view, the estimation of
 dispersion parameters taking the uncertainty in
 the fixed and random effects into account and the
 estimation of fixed and random effects taking un-
 certainty in the dispersion parameters into account
 are not different in principle, but different types of
 approximation are likely to be appropriate. A prac-
 tical approximate Bayesian procedure for estimat-
 ing the precision of fixed and random effects is to
 approximate the Bayesian posterior distribution for
 0 by a discrete distribution over a small number of
 possibilities and to use BLUP at each of these
 possibilities thereby calculating a mixture of distri-
 butions as posterior for the fixed and random ef-
 fects.

 5.7 Empirical Bayes Methods

 Empirical Bayes methods are concerned first with
 estimating distributions from which random effects
 have been generated. Once a distribution of ran-
 dom effects has been estimated, this distribution is
 used to estimate realized values of random effects
 using Bayes' Theorem. If the distribution of ran-
 dom effects is Gaussian, then empirical Bayes
 methods would use BLUP estimates to estimate
 fixed and random effects.

 When parametric assumptions are made about
 the distribution of the random effects then the
 statistical methods employed are described as
 parametric empirical Bayes. BLUP is equivalent to
 one of the techniques of parametric empirical Bayes
 methodology.

 5.8 Ranking and Selection

 BLUP was originally developed for ranking and
 selection in the contexts of animal breeding and
 genetics. It is an appropriate technique when the
 ideal ranking or selection criteria involve unob-
 servable characteristics that may be regarded as
 random effects.

 Much theoretical work on ranking and selection
 seems to have been done in ignorance of BLUP.
 This work tries to control the probability that rank-
 ing or selection decisions will be made correctly,

 when the probability is to be calculated before the
 data are available. In contrast, BLUP is concerned
 with correct selection between random effects given
 the data, as in Berger and Deely (1988).

 Stein (1945) presented a procedure that obtains
 an interval estimate of preassigned length for the
 mean of a normal distribution when the population
 variance is unknown. It achieves this by sampling
 in two stages and ignoring the information about
 the population variance contained in the sample
 variance for the second sample. It is not a satisfac-
 tory technique for practical application because it
 concentrates on initial precision rather than final
 precision, it does not achieve its nominal coverage
 probability conditional on the ancillary statistic
 s' / s' where s2 is the sample variance in the ith
 stage of sampling, and it violates the likelihood
 principle. Stein's procedure is a foundation stone
 for some theoretical work on ranking and selection
 that I believe to be misguided. BLUP would be a
 better foundation stone.

 6. APPLICATIONS

 There are a number of situations in which esti-
 mation of random effects is precisely what is re-
 quired. Morris (1983) has discussed several of them.
 A brief discussion of some of them should help to
 establish the point that estimation of random ef-
 fects is a legitimate activity, even if not very com-
 mon.

 There are four features which are common to
 most of the applications.

 1. The data and the random effects to be esti-
 mated are often multivariate.

 2. Computational issues are often extremely im-
 portant.

 3. Sparsity or approximate sparsity of partial
 correlation matrices is more important than
 sparsity or approximate sparsity of correlation
 matrices.

 4. Random effects selected on the basis of the
 estimates made are often of particular inter-
 est.

 People having difficulty with one of these features
 for any of the applications should consider how the
 feature is handled for the other applications.

 6.1 Estimation of Merit of Individuals

 Efron and Morris (1977) discussed estimating the
 batting abilities of 18 baseball players. The true
 batting abilities can be regarded as random effects
 drawn from a distribution. To estimate the mean
 and variance of the distribution of batting abilities

This content downloaded from 14.139.222.72 on Fri, 01 Nov 2019 07:01:24 UTC
All use subject to https://about.jstor.org/terms



 THE ESTIMATION OF RANDOM EFFECTS 25

 is of some interest, but the main problem is esti-
 mating the random effects.

 In plant variety trials, it is sometimes realistic to
 regard the varieties as random effects since they
 have been generated by processes that are random

 at the chromosome level. The objective of variety
 trials is generally to find the best varieties or to
 estimate the yield (or some other characteristic) of
 all varieties, not to estimate the parameters of the
 distribution from which the varieties are a sample.

 6.2 Selection Index

 In quantitative genetics, the selection index pro-

 vides a way of ranking plants or animals given
 measurements on several traits on the individuals
 to be ranked and their relatives.

 The selection index can be seen to be a particular
 case of the BLUP estimates of random effects

 &= (ZR-1Z + G1) ZTR-ly

 = GZT(R + ZGZT)'y

 using (5.2). The model being fitted is

 y = Zu + e,

 where u is a vector of additive genetic merits of
 animals with variance-covariance matrix G and e
 is a vector of other influences including nonaddi-
 tive genetic merits, permanent environmental ef-
 fects and measurement errors. In this context u is
 often referred to as "genotype," although it only
 gives the so-called "additive" part of genetic merit,
 which is the average merit of all potential offspring
 for a population of potential mates. The matrix G
 is called the genetic variance-covariance matrix.
 The measurable quantities, y, are referred to as
 "phenotype," and Var(y) = R + ZGZT is called the
 phenotypic variance-covariance matrix.

 Consider a situation where a trait is measured
 with equal precision on an animal and on one of its
 parents. Suppose that the variance of genotype is
 a2 and the variance from other sources is a2(1 -
 h2)/h2 so that the heritability (ratio of genotypic
 variance to total variance) is h2. Taking

 rmeasurement on animal
 Y measurement on parent]'

 z _ 1 01
 L[ 1]'

 G =2[1 2

 the genotypes of the two animals having correla-

 tion 21, and

 1 - h [l2 - 2 ~21 0]

 gives

 h2_ r4 2 21 4 - h 2 -2h

 4 - h4 2 - 2h2 4 - h2]

 in agreement with a formula from Turner and

 Young (1969, page 148). This tells us how to weight
 the two pieces of data in order to best estimate the
 genetic merit of the animal. It provides the best
 index combining the two pieces of information on
 which to base selection decisions.

 It is often easier to work with the BLUP form of

 the selection index because the matrix G-1 is gen-
 erally sparser than G, as shown by Henderson
 (1976). Essentially, this sparsity arises because G- 1
 is a matrix of partial correlations, and the partial
 correlations of genetic merits of pairs of animals
 that are not mates or parent and offspring given
 the genetic merits of all their mates, parents and
 offspring is zero, as argued by Robinson (1986).

 6.3 Estimation of Quality

 In his many seminars on quality and manage-
 ment, Deming often refers to the distinction be-

 tween "analytic" and "enumerative" studies as ex-
 plained in Deming (1950, Chapter 7). One way of

 explaining this distinction is that analytic studies
 are concerned with estimating fixed effects while
 enumerative studies are concerned with estimating
 random effects.

 Average quality over a particular time period is
 a random effect. The quality measurement plan
 (QMP) of Hoadley (1986) regards the true quality
 index for a period of production as having come
 from an probability distribution. The QMP esti-
 mates the true quality index. It is an example of
 1BLUP where distributions other than normal are
 assumed.

 An example of quality estimation that illustrates
 the distinction between estimation of fixed effects
 and estimation of random effects is sampling and
 testing of a shipload of coal or iron ore. The aver-
 age grade of a large number of samples taken from
 a conveyor belt as the ship is loaded provides a
 fairly precise estimate of the average grade of the
 shipload. However, it may not provide a precise
 estimate of the average grade of all shiploads, par-
 ticularly if there is substantial long-term variation
 in grade.

 If the grade of ore as a function of cumulative
 tonnage, X(t), is regarded as a stochastic process,
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 then the average grade of the shipload is a random

 effect. It is JA X(t) dt/(B - A) for some constants
 A and B that delimit the shipload. The average

 grade of all shiploads is a fixed effect. It is the
 mean of a stochastic process.

 Deming would regard the sampling and testing
 as being an "analytic" study insofar as it is study-
 ing the mean of all shiploads and as being an
 "enumerative" study in so far as it is studying a
 single shipload.

 Further details of this application appear in

 Saunders, Robinson, Lwin and Holmes (1989). See
 also Cochran (1946), Yates (1949), Jowett (1952),
 Duncan (1962), Matheron (1965) and Gy (1982).

 It should be noted that many sampling standards
 are designed to estimate the population mean of a
 process (an analytic study-a fixed effect), not the
 mean of a lot (an enumerative study-a random

 effect), but they fail to make the distinction clear.
 Often, the mean of a lot can be estimated much
 more precisely than the process mean with given
 data.

 6.4 Time Series and Kalman Filtering

 Some time series problems are concerned with
 estimating fixed parameters associated with time
 series. Many other time series problems may use-

 fully be regarded as problems of estimating random
 effects.

 The observed value of a time series is the sum of
 signal and noise that may be regarded as random
 effects that differ in their spectra. Smoothing, fil-
 tering and prediction problems all involve estima-
 tion of the random effects that form the signal.

 To illustrate the link between estimation of ran-
 dom effects and time series, we consider the Kalman
 filter, which is used for estimating the current
 value of the signal in a time series. The estimates
 obtained by Kalman filtering and by BLUP must
 be the same because of their optimality properties.
 However, it seems worthwhile to consider an ap-
 proach to Kalman filtering directly from BLUP.
 See also Broemeling and Diaz (1985), Harrison and
 Stevens (1976) and Sallas and Harville (1981). Inci-
 dentally, Sorenson (1970) suggests that the Kalman
 filter is not entirely due to Kalman.

 We follow the terminology of Meinhold and
 Singpurwalla (1983) who explained the Kalman
 filter in a Bayesian framework.

 Suppose that unobservable vector-valued random
 variables ut are related by

 Ut= Gtut-i + wt

 for t = 1, 2, . . ., n with u0 = 0. An observable vec-

 tor-valued random variable Yt is related to the ut
 by

 Yt = Ftut + vt.

 Assume that Gt and Ft are known. Further, sup-
 pose that the wt and vt are independent and nor-
 mally distributed with zero means and known vari-

 ances Wt and Vt.
 This is an example of a random effects model.

 The variance-covariance matrix for the random ef-
 fects is not simple. Denoting it by

 G = (gi )

 where

 gij = Cov(ui, uj) = E[ ui u'],

 it is defined recursively by the following equations:

 gil = Wi

 gij = Gigi_lj for i >j

 gij = gij-1Gf for i <j
 gii = Gigi-li + Wi

 = giilGi + Wi.

 The matrix G-1 is simpler than G. It is block
 tridiagonal essentially because the partial correla-
 tions of pairs of nonadjacent ut given an intermedi-
 ate ut are always zero. It is

 G = (gii)

 where

 for i<n,

 = Wi + G T+Wi-+l'Gi+1

 gii+1 -GT -

 g+l = Wi+Gi+l

 and all other g j are zero matrices.
 The matrix algebra required to show equivalence

 of BLUP estimates with the Kalman-Bucy algo-
 rithm is not trivial, but the statistical theory is
 simple. The Kalman-Bucy algorithm is computa-
 tionally efficient because computations for time t
 make use of results obtained for time t - 1. This
 use of the immediate past depends crucially on the
 simplicity of the matrix G- 1, which is due to the
 Markovian nature of the process generating the ut.
 A general principle illustrated here is that partial
 correlation matrices are more important computa-
 tionally than correlation matrices.

 Note that, being equivalent to BLUP estimation
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 of random effects, Kalman filtering is not maxi-
 mum likelihood.

 6.5 Removing Noise from Images

 Besag (1986) reviewed many methods of attempt-
 ing to restore images that have been corrupted by
 noise. The simplest models for continuously vari-
 able intensity over a grid are auto-normal models
 in which the point intensities are normally dis-
 tributed and have nonzero partial correlations with
 intensities at neighboring points on the grid. Within
 our framework, the true image is a random effect
 that we wish to estimate. What Besag calls the
 "maximum a posteriori" estimate of the true im-
 age is equivalent to BLUP for these models.

 As in other applications being discussed, the ob-
 jective of primary interest is to estimate random
 effects.

 6.6 Geostatistics

 The method of geological reserve estimation
 known as Kriging is essentially the same as BLUP.
 It was developed independently from BLUP. A dif-
 ference from the estimation of genetic merits is
 that variance parameters are estimated more fre-
 quently than in genetic applications.

 The random effect that is estimated is the pat-
 tern of grade of ore as a function of position in two-
 or three-dimensional space. Estimation of the ran-
 dom effect is of much more immediate interest to a
 company that is considering a mining operation
 than is estimation of the parameters of the distri-
 bution from which the pattern of grade is a sample.

 There is much more to ore reserve estimation
 than Kriging. A concise summary of some of the
 difficulties written by Matheron appears in the
 Foreword to Journel and Huijbregts (1978). One
 very substantial difficulty is that the economic fea-
 sibility of mining a deposit is based on a small
 number of drill-holes, but decisions about which
 blocks of ore will be processed and which will be
 dumped as waste will be made using data from
 blast-holes that are much more numerous than the
 drill-holes. The average grade of the ore that will.
 be selected for processing is much harder to predict
 than is the overall average grade. This difficulty is
 most acute when only a small proportion of the
 rock to be mined will be processed.

 6.7 Credibility Theory

 Credibility theory is a collection of ideas used by
 actuaries to work out insurance premiums. As an

 example, consider setting workers' compensation
 premiums for industrial companies that have dif-

 ferent numbers of employees and different safety
 records. This example was discussed by Mowbray
 (1914).

 In terminology like that of the present paper, let

 ui denote the true fair premium for company num-
 ber i. The ui may be regarded as random effects
 and the BLUP estimates of them will be useful. If a
 company has an extensive claims record, then its
 estimated premium will depend almost entirely on
 its own record. If a company has little claims record,
 then the estimated premium for that company will
 differ little from the average premium for all
 companies.

 The classical approach to credibility is to assume
 that there is a credibility factor, denoted Z(t), where
 t is the size of the risk class, such that the esti-

 mated fair premium is

 Z(t)y + {1 - Z(t)}m'

 where y is the fair premium as estimated using
 data for the single risk class only, and m' is the
 average fair premium over all risk classes. The
 function Z(t) is chosen in a somewhat arbitrary
 manner which need not concern us here. (See Hick-
 man, 1975.)

 The Bayesian approach to credibility is to use
 conjugate prior distributions for the ui. The devel-
 opment of the Bayesian approach is attributed to
 Bailey (1945, 1950) and Mayerson (1965). See Kahn
 (1982) for a brief review.

 6.8 Small-Area Estimation

 Small-area estimation involves using direct sur-
 vey information from areas of individual interest
 together with information on similar or related
 areas. It has been found that more precise esti-
 mates can be made than if information on the other

 areas had been ignored. One approach is to regard
 the quantities of interest in the individual areas as
 being random effects which are to be estimated.
 See Battese, Harter and Fuller (1988), Prasad and
 Rao (1986), Fuller and Harter (1987) and the other
 papers in the same volume from the May 1985
 International Symposium on Small Area Statistics
 for further information about this field of applica-
 tion.

 7. DISCUSSION

 7.1 Prediction or Estimation?

 Henderson originally used the term "predictor"
 rather than "estimator" in order to evade criticism
 of BLUP. Henderson (1984, page 37) expressed
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 doubts about the appropriateness of the terminol-
 ogy:

 Which is the more7 logical concept, prediction of
 a random variable or estimation of the realized
 value of a random variable? If we have an
 animal already born, it seems reasonable to
 describe the evaluation of its breeding value as
 an estimation problem. On the other hand, if
 we are interested in evaluating the potential

 breeding value of a mating between two poten-
 tial parents, this would be a problem in predic-
 tion. If we are interested in future records, the
 problem is clearly one of prediction.

 From conversations with him, I believe that he
 accepts the weaknesses of the terminology:

 * in some applications, the thing being esti-
 mated has already occurred, and

 * BLUP is a predictor only in the same way
 as most estimates are predictors-if they
 were not relevant to something which might
 happen in the future then they would not be
 of interest.

 It has become common practice to "estimate" fixed
 effects and to "predict" random effects. I believe
 that Henderson would be content to use terms such
 as "estimate" and "estimate of realized value." I
 prefer simple terminology-to use "estimation" of
 both fixed and random effects.

 7.2 Unbiasedness and Shrinkage

 The BLUP estimator &t of u is sometimes said to
 be "unbiased" because it satisfies

 E[|u] = E[u].

 It is also described as a "shrinkage" estimator
 because its components are less spread than the
 generalized least-squares estimates that would be
 used if the components of u were regarded as fixed
 effects. These two descriptions seem to be in con-
 flict with one another.

 The difficulty is that the use of the term "unbi-
 ased" is very different from the condition

 E[uIu]I=u forallu,

 which is what many people intuitively expect, par-
 ticularly in circumstances where the random pro-
 cesses generating the random effects (genetic mer-
 its of dairy bulls or ore grades in a deposit, for
 instance) occur prior to other processes generating
 noise in the data. Whenever I mean "unbiased" in

 the sense that E[u ] = E[u] I try to make this very
 clear. Perhaps some new terminology would be a
 good idea.

 7.3 Fixed and Random Effects

 Eisenhart (1947) distinguished between two uses
 for analysis of variance: (1) detection and estima-
 tion of fixed (constant) relations among the means
 of subsets of the universe of objects concerned; and
 (2) detection and estimation of components of (ran-
 dom) variation associated with a composite popula-
 tion. He suggested two parallel sets of questions to
 help distinguish fixed and random effects, and these
 tend to imply that estimation of random effects is
 not sensible because effects of interest must be
 treated as fixed.

 1. "Are the conclusions to be confined to the
 things actually studied (the animals, or the
 plots); to the immediate sources of these things
 (the herds, or the fields); or expanded to apply
 to more general populations (the species, or
 the farmland of the state)?"

 2. "In complete repetitions of the experiment
 would the same things be studied again (the
 same animals, or the same plots); would new
 samples be drawn from the identical sources
 (new samples of animal from the same herds,
 or new experimental arrangements on the
 same fields); or would new samples be drawn
 from more general populations (new samples
 of animals from new herds, or new experimen-
 tal arrangements on new fields)?"

 The discussion of the difference between fixed
 and random effects given in Searle (1971) is simi-
 larly misleading in my view. On page 383, Searle
 writes

 ... when inferences are going to be confined to
 the effects in the model the effects are consid-
 ered fixed; and when inferences will be made
 about a population of effects from which those
 in the data are considered to be a random
 sample then the effects are considered as ran-
 dom.

 Both of these people have defined their terms in
 such a way that estimation of random effects is not
 possible.

 In my view, there are two questions which might
 need to be answered in order to decide whether the
 effects in a class are to be treated as fixed or
 random. The first of these is: Do these effects come
 from a probability distribution? If the effects do not
 come from a probability distribution then the ef-
 fects should be treated as fixed.

 If the effects do come from a probability distribu-
 tion, then if the effects are themselves being esti-
 mated they should be treated as random. For classes
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 of effects which are nuisance parameters, there is a
 second question to be answered: Is interclass infor-
 mation to be recovered for this class of effects? If
 interclass information is to be recovered then treat

 the class of effects as random, otherwise fixed.

 EXAMPLE. When estimating the genetic merit of
 dairy bulls, the herd-year-season effects that are
 used to model environmental variation do come
 from a probability distribution which describes
 variation: that between herds, years and calving
 seasons. When estimating herd-year-season effects
 I believe that they should be treated as random.
 However, when estimating genetic merits of dairy
 bulls I believe that herd-year-season effects should
 be treated as fixed because the inter-herd informa-
 tion should not be recovered-Farmers' choices of
 artificial insemination bulls and their choice of
 feeding regimes are somewhat related, and to re-
 cover the inter-herd information would favor the
 bulls that were more often chosen by farmers pro-
 viding high feed intakes. Similarly, bull choices
 vary between years, and yearly climatic variation
 might bias estimated breeding values. The decision
 not to recover inter-herd-year-season information is
 based on a willingness to sacrifice some efficiency
 for greater robustness relative to departures from
 the assumptions of the model.

 I agree with Tukey's remark made in discussion
 of Nelder (1977): ... . our focus must be on ques-
 tions, not models." The choice of whether a class of
 effects is to treated as fixed or random may vary
 with the question which we are trying to answer.

 7.4 Generalizing Likelihood

 When Fisher (1922, page 326) introduced the
 idea of likelihood as the probability of data given a
 hypothesis regarded as a function of the hypothesis,
 I doubt that he had considered problems of estimat-
 ing random effects.

 For estimation of fixed effects and dispersion pa-
 rameters for the random effects model (1.1) the
 usual definition of likelihood seems adequate. How-
 ever, if we wish to estimate the random effects, u,
 then the usual concept of likelihood seems to oblige
 us to regard the value of u as part of the hypothe-
 sis. In effect, the idea of likelihood tends to force us
 to regard things that we wish to estimate as fixed
 rather than random effects.

 In my view, when we specify a mixed model the
 dispersion of the random effects, u, and the disper-
 sion of the error, e, ought to be given similar logical
 status. How can this be achieved?

 One possible attempt to resolve the problem based
 on Bayesian concepts would be to regard the as-

 sumed distribution of the random effects as an
 objective prior distribution. It is different in logical
 status from a subjective prior distribution from
 which the fixed effects might be considered to have
 come. One distinguishing feature is that the objec-
 tive distribution of the random effects is being used
 to describe variation while the subjective prior dis-
 tribution of the fixed effects is being used to de-
 scribe uncertainty. A second distinguishing feature
 is that assumptions about the distribution of the
 random effects can be tested.

 To use such an objective prior distribution for
 random effects should not be considered to make
 one a Bayesian. Good (1965, page 8) wrote

 the essential defining property of a Bayesian is
 that he regards it as meaningful to talk about

 the probability P(H I E) of hypothesis H, given
 evidence E.

 To be a Bayesian, you would need to be willing to
 put a prior distribution on fixed effects as well as
 random effects. Kempthorne in the discussion of
 Lindley and Smith (1972, page 37) described people
 who wish to estimate random effects as "legiti-
 mate" Bayesians; I agree with the ideas behind
 this designation, but I prefer to adhere to Good's
 use of the term "Bayesian."

 This attempt to define likelihood in a way which
 allows estimation of random effects separates the
 distribution of e (the likelihood), the distribution of
 u (the objective prior distribution), and the uncer-
 tainty about ,B and 0 (the subjective prior distribu-
 tion for Bayesians) into three separate boxes. It
 does not achieve the stated goal of giving similar
 logical status to the dispersion of e and the disper-
 sion of u.

 Most likely unobservables. An alternative res-
 olution of the problem based on Classical concepts
 is to formalize the principle behind Henderson's
 derivation of BLUP. This principle does achieve the
 goal of giving similar logical status to the disper-
 sion of e and the dispersion of u. A colleague, T.
 Lwin, and I would like to suggest the name method
 of most likely unobservables for it.

 Given the mixed model (1.1) and having observed
 the data y, the method of most likely unobserv-
 ables is to say that the best estimates of 13, u and e
 are the ones that maximize the density of the unob-
 servables u and e subject to the constraint (1.1) of
 having observed the data. Because there are n
 constraints and n components to the vector e, the
 easiest way to solve for the maximum is to set

 e = y - X,8 - Zu

 and maximize the joint density of u and e with
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 respect to (3 and u. This is precisely Henderson's
 derivation of BLUP discussed in Section 4.1.

 For a fixed effects model, the likelihood of the
 data and the likelihood of the errors are equal, so
 the method of most likely unobservables gives esti-
 mates of the fixed effects that are the maximum
 likelihood estiniates and gives estimates of the er-
 rors, e, that are the usual residuals.

 7.5 On Schools of Thought

 I believe that the distinction between fixed and
 random effects should be clarified before differences
 between schools of thought are considered.

 Statistics is concerned with both variation and
 uncertainty. Classical statistics can be distin-
 guished from Bayesian statistics by its refusal to
 use probability distributions to describe uncer-
 tainty. However, it is quite willing to use probabil-
 ity distributions to describe variation, and this
 should include variation between random effects.
 Once this is clarified, several situations in which
 the two schools of thought appeared to give differ-
 ent answers instead demonstrate close agreement
 between the schools.

 There are a number of reasons why the estima-
 tion of random effects has been neglected to some
 extent by the Classical (Neyman-Pearson-Wald,
 Berkeley) school of thought.

 1. The distinction between fixed and random
 effects has been often taken to be that effects
 are random when you are not interested in
 their individual values. Searle (1971), for in-
 stance, seems to suggest this. This implies
 that you should never be interested in esti-
 mating random effects.

 2. The idea of estimating random effects seems
 suspiciously Bayesian to some Classical statis-
 ticians. The gulf between Bayesian and Clas-
 sical statisticians seems to be like many other
 gulfs between schools of thought in that the
 adherents of each school emphasize the differ-
 ences between schools rather than the similar-
 ities.

 Within the Bayesian paradigm, there is little
 reason for distinguishing between fixed and ran-
 dom effects. All effects are treated as random in the
 sense that probability distributions used to describe
 uncertainty are not treated any differently from
 probability distributions used to describe variation.
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 Comment
 Katherine Campbell

 It has been a pleasure to read about the long
 history of Best Linear Unbiased Prediction, and
 especially about its uses in traditional statistical
 areas of application such as agriculture. My own
 experience with BLUP is in the context of ill-posed
 inverse problems, and I would like to discuss this
 paper from this point of view, where the random
 effects are generated by hypothesized superpopula-
 tions, in contrast with the identifiable populations
 considered by Robinson.

 MODEL-BASED ESTIMATION FOR ILL-POSED
 INVERSE PROBLEMS

 The author mentions two examples of superpopu-
 lation approaches to estimation: image restoration
 and geostatistics. The same ideas are also used in
 model-based estimation for finite populations, func-
 tion approximation and many other inference prob-
 lems. These problems concern inference about a
 reality that is in principle completely determined,
 but whose observation is limited by the number
 and/or resolution of the feasible measurements, as
 well as by noise. In geophysics, x-ray imaging and
 many other areas of science and engineering these
 are known as inverse problems (O'Sullivan, 1986;
 Tarantola, 1987). <

 The unknown reality we may consider to be a
 function m defined on some domain T. The data
 typically consist of noisy observations on a finite
 number n of functionals of m. We can write the
 data vector y in terms of a transformation L map-
 ping m into an n-dimensional vector:

 y = Lm + e.

 Katherine Campbell is a staff member of the Statis-
 tics Group, Los Alamos National Laboratory, Los
 Alamos, New Mexico 87545.

 In the sequel, we will assume that L is a linear
 transformation, i.e., that the observed functionals

 are linear. In particular, if the cardinality I T I of T
 is finite, L can be represented by an n x IT I
 matrix.

 BLUP arises when we embed this problem in a
 superpopulation model, under which m is one real-
 ization (albeit the only one of interest) of a stochas-
 tic process M indexed by T. This superpopulation
 model has two components, corresponding to the
 "fixed" and "random" effects in Robinson's discus-
 sion. The fixed effects define the mean of the super-
 population, which is here assumed to lie in a finite-
 dimensional subspace of functions on T. We denote
 this subspace by R(F), the range of the linear
 operator F that maps a p-vector b into the function

 Fb= Ebifi.

 where {f1,... ,fp} is a basis for the subspace.
 Any realization of M' can then be written as a

 sum F,3 + u, where ,3 is an unknown vector of p
 fixed effects and u is a realization of a stochastic
 "random effects" process with mean zero and co-
 variance P. As we are interested in the realized m,
 we need to estimate both the fixed and random
 effects. Among estimates that are linear functions
 of the data vector

 (1) y = LF3 + Lu + e,

 the BLUP mi = Ffl + u is the optimal choice: under
 the assumed superpopulation model 'm is unbiased
 in the sense of Section 7.2 (i.e., Efmr = Em) and it
 minimizes the variance of any linear functional of
 m - m. (To make the correspondence between
 equation 1 and Robinson's equation (1.1) explicit,
 X = LF, Z = L, G = LPLT, and e is a realization
 of a random n-vector with mean zero and covari-
 ance R. , and uO are then provided by the BLUP
 formulas.)
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